1887

Abstract

gen. nov., sp. nov., isolated from a petroleum reservoir production fluid, is described. The single isolate was an obligately halophilic, aerobic, gram-negative, oval rod-shaped bacterium that was actively motile by means of a single polar flagellum. It was catalase and oxidase positive. The isolate had a specific requirement for NaCI; growth occurred at NaCI concentrations between 6 and 20%, and optimal growth occurred in the presence of 15% NaCI. This species metabolized primarily organic acids and required biotin for growth. The name is proposed for the new genus, which was placed in the gamma subclass of the on the basis of the results of a 16S rRNA sequence analysis. Although is most closely related to purple sulfur bacteria (the genera and ), it is not a phototrophic microorganism, which is consistent with its isolation from a subterranean environment. The major components of its cellular fatty acids were C, C, C, C, and C acids. The DNA base composition of the type strain is 67 mol% G+C. The type and only strain is strain HA-1 (= ATCC 49307).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-3-514
1993-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/3/ijs-43-3-514.html?itemId=/content/journal/ijsem/10.1099/00207713-43-3-514&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Cornell L. A., Tanner R. S. 1992; Microbial composition of carbonate petroleum reservoir fluids. Geomicro-biol. J 10:87–97
    [Google Scholar]
  2. Adkins J. P., Madigan M. T., Mandelco L., Woese C. R., Tanner R. S. 1990; Arhodomonas oleiferhydrans HA-1 gen. nov., sp. nov., a new aerobic, obligately halophilic bacterium isolated from subterranean brine, abstr. R-12. p. 247 Abstr. 90th Annu. Meet. Am. Soc. Microbiol. 1990
    [Google Scholar]
  3. Batch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  4. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium rumi-nantium in a pressurized atmosphere. Appl. Environ. Microbiol 32:781–791
    [Google Scholar]
  5. Bejar V., Quesada E., Guitierrez M. C., Del Moral A., Valderrama M. J., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1992; Taxonomic study of moderately halophilic gram-positive endospore-forming rods. Syst. Appl. Microbiol 14:223–228
    [Google Scholar]
  6. Bhupathinyu V. K., Sharma P. K., Mclnerney M. J., Knapp R. M., Fowler K., Jenkins W. 1991; Isolation and characterization of novel halophilic anaerobic bacteria from oil field brines. Dev. Petrol. Sci 31:131–143
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli.. Proc. Natl. Acad. Sci USA: 75:4801–4805
    [Google Scholar]
  8. DeSoete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  9. Dobson S. J., James S. R., Franzmann P. D., McMeekin T. A. 1990; Emended description of Halomonas halmo-phila (NCMB 1971T). Int. J. Syst. Bacteriol 40:462–463
    [Google Scholar]
  10. Dobson S. J., James S. R., Franzmann P. D., McMeekin T. A. 1991; A numerical taxonomic study of some pigmented bacteria isolated from Organic Lake, an antarctic hypersaline lake. Arch. Microbiol 156:56–61
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol 11:16–19
    [Google Scholar]
  12. Garcia M. T., Ventosa A., Ruiz-Berraquero F., Kocur M. 1987; Taxonomic study and amended description of Vibrio costicola. Int. J. Syst. Bacteriol 37:251–256
    [Google Scholar]
  13. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol 42:568–576
    [Google Scholar]
  14. Imhoff J., Riedel T. 1989; Requirements for, and cytoplasmic concentrations of, sulphate and chloride, and cytoplasmic volume spaces in the halophilic bacterium Ectothiorhodospira mobilis.. J. Gen. Microbiol 135:237–244
    [Google Scholar]
  15. Imhoff J. F. 1992; The family Ectothiorhodospiraceae. p. 3223–3229 In Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes vol. 4:, 2nd ed. Springer-Verlag; New York:
    [Google Scholar]
  16. Imhoff J. F., Ditandy T., Thiemann B. 1991; Salt adaption of Ectothiorhodospira. p. 115–120 In Rodriguez-Valera F. (ed.) General and applied aspects of halophilic microorganisms Plenum Press; New York:
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. p. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism vol. 3 Academic Press; New York:
    [Google Scholar]
  18. Kita-Tsukamoto K., Oyaizu H., Nanba K., Simidu U. 1993; Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol 43:8–19
    [Google Scholar]
  19. Knapp R. M., Chisolm J. L., Mclnerney M. J., Menzie D. E. 1989; Pre-test studies and design for a microbially enhanced oil recovery field pilot. p. 48–58 In Proceedings of the Eighth Tertiary Oil Recovery Conference University of Kansas; Lawrence:
    [Google Scholar]
  20. Kushner D. J., Kamekura M. 1988; Physiology of halophilic eubacteria. p. 109–138 In Rodriquez-Valera F. (ed.) Halophilic bacteria vol. 1 CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  21. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci USA: 82:6955–6959
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denatur-ation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  24. Miller L. T. 1982; Single derivitization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol 16:584–586
    [Google Scholar]
  25. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobi-lis.. J. Clin. Microbiol 26:484–492
    [Google Scholar]
  26. Neefs J. M., Van der Peer Y., Hendriks L., De Wachter R. 1990; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:2237–2317
    [Google Scholar]
  27. Nishimura Y., Kinpara M., Iizuka H. 1989; Mesophilobacter marinus gen. nov., sp. nov.: an aerobic coccobacillus isolated from seawater. Int. J. Syst. Bacteriol 39:378–381
    [Google Scholar]
  28. Olsen G. J., Larsen N., Woese C. R. 1991; The ribosomal RNA database project. Nucleic Acids Res 19:2017–2021
    [Google Scholar]
  29. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Xing Y., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res 20:2199–2200
    [Google Scholar]
  30. Oyaizu H., Debrunner-Vossbrinck B., Mandelco L., Stud-ier J. A., Woese C. R. 1987; The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst. Appl. Microbiol 9:47–53
    [Google Scholar]
  31. Pfennig N., Triiper H. G. 1992; The family Chromati-aceae. p. 3200–3221 In Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes vol. 4, 2nd ed.. Springer-Verlag; New York:
    [Google Scholar]
  32. Prado B., Del Moral A., Quesada E., Rios R., Monteoliva-Sanchez M., Campos V., Ramos-Cormenzana A. 1991; Numerical taxonomy of moderately halophilic gram-negative rods isolated from the Salar de Atacama, Chile. Syst. Appl. Microbiol 14:275–281
    [Google Scholar]
  33. Quesada E., Valderrama M. J., Bejar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacteriol 40:261–267
    [Google Scholar]
  34. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol 34:287–292
    [Google Scholar]
  35. Rodriguez-Valera F. (ed.) 1991 General and applied aspects of halophilic microorganisms Plenum Press; New York:
    [Google Scholar]
  36. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 MIDI, Inc.; Newark, Del.:
    [Google Scholar]
  37. Smibert R. M., Krieg N. R. 1981; General characterization. p. 409–443 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  38. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol 38:321–325
    [Google Scholar]
  39. Tanner R. S. 1989; Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10:83–90
    [Google Scholar]
  40. Valderrama M. J., Quesada E., Bejar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic gram-negative bacterium. Int. J. Syst. Bacteriol 41:377–384
    [Google Scholar]
  41. Ventosa A. 1988; Taxonomy of moderately halophilic hetero-trophic eubacteria. p. 71–84 In Rodriguez-Valera F. (ed.) Halophilic bacteria vol. 1 CRC Press, Inc.; Boca Raton, Fla.:
    [Google Scholar]
  42. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of “Chromohalobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb, nov., nom. rev. Int. J. Syst. Bacteriol 39:382–386
    [Google Scholar]
  43. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Ber-raquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. J. Gen. Microbiol 128:1959–1968
    [Google Scholar]
  44. Vreeland R. H. 1993; Taxonomy of halophilic bacteria. p. 105–134 In Vreeland R. H., Hochstein L. I. (ed.) The biology of halophilic bacteria CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  45. Vreeland R. H., Hochstein L. I. (ed.) 1993 The biology of halophilic bacteria CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  46. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol 30:485–495
    [Google Scholar]
  47. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  48. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stacke-brandt E. 1985; The phylogeny of the purple bacteria: the gamma subdivision. Syst. Appl. Microbiol 6:25–33
    [Google Scholar]
  49. Yang D., Oyaizu H., Oyaizu Y., Olsen G. J., Woese C. R. 1985; Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82:4443–4447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-3-514
Loading
/content/journal/ijsem/10.1099/00207713-43-3-514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error