1887

Abstract

Abstract

A total of 63 strains of rhizobia isolated from Hainan Province, a tropical region of the People’s Republic of China, and 27 representative strains belonging to the genera , , and were compared by performing numerical taxonomy, DNA hybridization, and DNA base composition analysis to determine the relationships among these rhizobia. The results indicated that the strains isolated from Hainan Province fell into two distinct phena, the slowly growing rhizobia and the fast-growing rhizobia. The slowly growing rhizobia, which formed three subphena that seemed to be three subspecies, are strains. The fast-growing strains belong to the genus and might be further divided into three specific groups. Sometimes both slowly growing rhizobia and fast-growing rhizobia were isolated from host plants belonging to the same genus or species or even from the same nodule. There was no correlation between hosts and the distribution of rhizobia in the subphena. Isolates obtained from members of the same host genus or species fell into different groups or subgroups.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-151
1994-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-151.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-151&mimeType=html&fmt=ahah

References

  1. Allen O. N., Allen E. K. 1981 The Leguminosae: a source book of characteristics, uses and nodulation The University of Wisconsin Press; Madison:
    [Google Scholar]
  2. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41 275 280
    [Google Scholar]
  3. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101 738 754
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12 133 142
    [Google Scholar]
  5. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38 89 98
    [Google Scholar]
  6. Dreyfus B. L., Dommergues Y. R. 1981; Nodulation of Acacia species by fast-and slow-growing tropical strains of rhizobium. Appl. Environ. Microbiol. 41 97 99
    [Google Scholar]
  7. Eaglesham A. R. J., Stowers M. D., Maina M. L., Goldman B. J., Sinclair M. J., Ayanaba A. 1987; Physiological and biochemical aspects of diversity of Bradyrhizobium sp. (Vigna) from three West African soils. Soil Biol. Biochem. 19 575 581
    [Google Scholar]
  8. Graham P. H., Harris S. C. 1982 Biological nitrogen fixation technology for tropical agriculture Centro Internacional de Agricultura Tropical; Cali, Colombia:
    [Google Scholar]
  9. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., Strjjdon B. W., Young J. P. W. 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41 582 587
    [Google Scholar]
  10. Herrera M. A., Bedmar E. J., Olivares J. 1985; Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci. 42 177 182
    [Google Scholar]
  11. Jordon D. C. 1984; Family III. Rhizobiaceae, Conn 1938. 234 256 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  12. Josey D. P., Beyhan J. L., Johnson A. W. B., Beringer J. E. 1979; Strain identification in Rhizobium using intrinsic antibiotic resistance. J. Appl. Bacteriol. 46 343 350
    [Google Scholar]
  13. Lindstrom K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39 365 367
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3 208 218
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of DNA from its thermal dénaturation temperature. J. Mol. Biol. 5 109 118
    [Google Scholar]
  16. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41 417 426
    [Google Scholar]
  17. Pagan J. D., Child J. J., Scowcroft W. R., Gibson A. H. 1975; Nitrogen fixation by Rhizobium cultured on a defined medium. Nature (London) 256 406 407
    [Google Scholar]
  18. Pohlman G. C. 1931; Changes produced in nitrogenous compounds by Rhizobium meliloti and R. japonicum. Soil Sci. 31 385
    [Google Scholar]
  19. Rinaudo G., Orenga S., Fernandez M. P., Meugnier H., Bardin R. 1991; DNA homology among members of the genus Azorhizobium and other stem- and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata. Int. J. Syst. Bacteriol. 41 114 120
    [Google Scholar]
  20. Sneath P. H. A. 1984; Numerical taxonomy. 5 7 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Sneath P. H. A., Sokal R. B. 1973 Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  22. Thompson J. P., Skerman V. B. D. 1979 Azotobacteriaceae Academic Press, Inc.; New York:
    [Google Scholar]
  23. Trinick M. J. 1968; Nodulation of tropical legumes. I. Specificity in the Rhizobium symbiosis of Leucaena leucocephala. Exp. Agric. 4 243 253
    [Google Scholar]
  24. Trinick M. J. 1980; Relationships amongst the fast-growing rhizobia oî Lablab purpur eus, Leucaena leucocephala, Mimosa spp., Acacia famesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49 39 53
    [Google Scholar]
  25. Wang C. H., Patchamuthu R., Meyer H., Pankhurst Z. A. C. E., Broughton W. J. 1988; Rhizobia in tropical legumes: ineffective nodulation of Arachis hypogaea L. by fast-growing strains. Soil Biol. Biochem. 20 677 681
    [Google Scholar]
  26. White L. O. 1972; The taxonomy of the crown gall organism Agrobacterium tumefaciens and its relationship to rhizobia and other agrobacteria. J. Gen. Microbiol. 72 565 574
    [Google Scholar]
  27. Zhang X. P., Harper R., Karsisto M., Lindstrom K. 1991; Diversity of rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41 104 113
    [Google Scholar]
  28. Zhang X. P., Karsisto M., Lindstrom K. 1992; Assessment of the competitiveness of fast-growing rhizobia infecting Acacia Senegal using antibiotic resistance and melanin production as identification markers. World J. Microbiol. Biotechnol. 8 199 205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-151
Loading
/content/journal/ijsem/10.1099/00207713-44-1-151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error