1887

Abstract

Abstract

The genus consists of extremely thermophilic, obligately chemolithotrophic organisms that exhibit anaerobic anabolism but aerobic catabolism. Preliminary studies of the phylogenetic position of these organisms based on limited 16S ribosomal DNA sequence data suggested that they belong to one of the earliest branching orders of the In this study, the complete 16S ribosomal DNA sequences of two type strains, TK-6 and Z-829, and another isolate, sp. strain T3, were determined, and the phylogenetic positions of these organisms were examined. Our results revealed that the two type strains are members of a single genus, the genus Our results also verified the previous conclusion that the complex belongs to a very early branching order, the Within this order, the relationships among the various organisms are such that only a single family, the ,” can be recognized at this time. Given the early branching point of the the characteristics of these organisms support the view that the last common ancestor of existing life was thermophilic and suggest that this ancestor may have fixed carbon chemoautotrophically.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-620
1994-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-620.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-620&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L., Gupta R., Stetter K. O., Woese C. R. 1987; Were the original eubacteria thermophiles?. Syst. Appl. Microbiol. 9:34–39
    [Google Scholar]
  2. Alfredson G. A., Ingason A., Kristjansson J. K. 1986; Growth of thermophilic, obligately autotrophic hydrogen-oxidizing bacteria on thiosulfate. Lett. Appl. Microbiol. 2:21–24
    [Google Scholar]
  3. Anonymous. 1984; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 14. Int. J. Syst. Bacteriol. 34:270–271
    [Google Scholar]
  4. Aragno M. 1992; Thermophilic, aerobic hydrogen-oxidizing (Knallgas) bacteria. 3917–3933 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria, 2nd ed. Springer Verlag; New York:
    [Google Scholar]
  5. Aragno M. 1992; Aerobic, chemolithoautotrophic, thermophilic bacteria. 77–103 Kristjansson J. K. Thermophilic bacteria CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  6. Aragno M., Schlegel H. G. 1992; The mesophilic hydrogen-oxidizing (Knallgas) bacteria. 344–384 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The Prokaryotes. A handbook on the biology of bacteria, 2nd ed. Springer Verlag; New York:
    [Google Scholar]
  7. Beaucage S. L., Caruthers M. H. 1981; Deoxynucleoside phosphoramidites: a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22:1859–1862
    [Google Scholar]
  8. Beh M., Strauss G., Huber R., Stetter K. O., Fuchs G. 1993; Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. 160:306–311
    [Google Scholar]
  9. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523
    [Google Scholar]
  10. Bonjour F. 1988 Ph.D. thesis University of Neuchâtel; Neuchâtel, Switzerland:
    [Google Scholar]
  11. Bonjour F., Aragno M. 1986; Growth of thermophilic obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol. Lett. 35:11–15
    [Google Scholar]
  12. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus. Syst. Appl. Microbiol. 15:352–356
    [Google Scholar]
  13. Calvin N. M., Hanawalt P. C. 1988; High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol. 170:2796–2801
    [Google Scholar]
  14. Felsenstein J. 1991 PHYLIP (phylogeny inference package), version 3.5 University of Washington; Seattle:
    [Google Scholar]
  15. Fox G. E., Wisotzkey J. D., Jurtshuk P. J. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  16. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15:340–351
    [Google Scholar]
  17. Igarashi Y., Kodama T. 1990; Hydrogenobacter thermophilus: its unusual physiological properties and phylogenetic position in the microbial world. FEMS Microbiol. Lett. 87:403–406
    [Google Scholar]
  18. Ishii M., Igarashi Y., Kodama T. 1987; Purification and some properties of cytochrome c552 from Hydrogenobacter thermophilus. Agric. Biol. Chem. 51:1695–1697
    [Google Scholar]
  19. Ishii M., Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1983; 2-Methylthio-1,4-naphthoquinone, a new quinone from an extremely thermophilic hydrogen bacterium. Agric. Biol. Chem. 47:167–170
    [Google Scholar]
  20. Jenni B., Aragno M., Wiegel J. K. W. 1987; Numerical analysis and DNA-DNA hybridization studies on Xanthobacter and emendation of Xanthobacter flavus. Syst. Appl. Microbiol. 9:247–253
    [Google Scholar]
  21. Jung V., Pestka S. B., Pestka S. 1990; Efficient cloning of PCR generated DNA containing terminal restriction endonuclease recognition sites. Nucleic Acids Res. 18:6156–00
    [Google Scholar]
  22. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 34:5–10
    [Google Scholar]
  23. Kristjansson J., Ingason A., Alfredsson G. A. 1985; Isolation of thermophilic autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from icelandic hot springs. Arch. Microbiol. 140:321–325
    [Google Scholar]
  24. Kryukov V. R., Savel’eva N. D., Pusheva M. A. 1983; Calderobacterium hydrogenophilum gen. et sp. nov., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Microbiology (Engl. Transi. Mikrobiologiya) 52:611–618
    [Google Scholar]
  25. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  26. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res. 21:3021–3023
    [Google Scholar]
  27. Lysenko A. M., Savel’eva N. D., Kryukov V. R. 1985; Some peculiarities of the reassociation of DNA of extremely thermophilic hydrogen bacteria. Biochemistry 50:1090–1094
    [Google Scholar]
  28. Marchiani M. 1993 (Université de Neuchâtel) Personal communication;
    [Google Scholar]
  29. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  30. Nishihara H., Igarashi Y., Kodama T. 1990; A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot springs. Arch. Microbiol. 153:294–298
    [Google Scholar]
  31. Norgard M. V., Bartell P. F. 1978; An accelerated spectrophotometric micro-procedure for the analysis of DNA-DNA hybridization in free solution. Gilford Res. Rev. 3:1–5
    [Google Scholar]
  32. Olsen G. J. 1992 User guide for the multiple sequence alignment editor SEQEDT Department of Microbiology, University of Illinois; Urbana:
    [Google Scholar]
  33. Olsen G. J. 1993 User guide for fastDNAml 1.0 Department of Microbiology, University of Illinois; Urbana:
    [Google Scholar]
  34. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176:1–6
    [Google Scholar]
  35. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. 277–296 Skinner F. A. Identification methods for microbiologists, 2nd ed. Academic Press; London:
    [Google Scholar]
  36. Pusheva M. A., Sukhikh A. P., Borodulina N. P., Savel’eva N. D. 1988; Characteristics of cytochromes of the extreme thermophilic obligate autotrophic hydrogen bacterium Calderobacterium hydrogenophilum. Microbiology (Engl. Transi. Mikrobiologiya) 49:572–576
    [Google Scholar]
  37. Saiki R. K. 1990; Amplification of genomic DNA. 13–27 Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. PCR protocols: a guide to methods and applications Academic Press; New York:
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 19891.75 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 19891.85–1.86 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 19896.30–6.31 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  41. Sanger F., Nickten S., Coulsen A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  42. Scharf S. J. 1990; Cloning with PCR. 84–91 Innis M. A., Gelfand D. H., Sminsky J. T., White T. J. PCR protocols: a guide to methods and applications Academic Press; London:
    [Google Scholar]
  43. Shiba H., Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1985; The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol. 141:198–203
    [Google Scholar]
  44. Shivarova N., Förster W., Jacob H. E., Grigorava R. 1983; Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts. Z. Allg. Mikrobiol. 23:595–599
    [Google Scholar]
  45. Sinha N. D., Biernat J., McManus J., Köster H. 1984; Polymer support oligonucleotide synthesis XVIII: Use of β-eyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 12:4539–4557
    [Google Scholar]
  46. Woese C. R. 1987; Bacterial evolution. Microbial Rev. 51:221–271
    [Google Scholar]
  47. Woese C. R., Kandier O., Wheelis M. 1990; Towards a natural system of organisms: proposal for the domains Archae, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-620
Loading
/content/journal/ijsem/10.1099/00207713-44-4-620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error