1887

Abstract

We investigated expression of acid phosphatases containing low-molecular-mass (25 to 27-kDa) polypeptides (Lmmp-APs) similar to those described previously for serovar typhimurium and in strains that were representatives of 43 different enterobacterial species by using a zymogram technique developed for detection of Lmmp-AP activities and for analysis of some of the properties of these enzymes. Under conditions that were suitable for detection of the previously described Lmmp-APs, production of similar enzymes appeared to be widespread but not universal among enteric bacteria, and heterogeneous patterns of expression were found among strains belonging to different genera and, in some cases, among strains belonging to different species of the same genus. We found that class A Lmmp-APs (i.e., Lmmp-Aps similar to the PhoC and serovar typhimurium PhoN acid phosphatases) were also expressed in spp., , , spp., , , and strains and that class B Lmmp-APs (i.e., Lmmp-APs similar to the NapA and serovar typhimurium NapII acid phosphatases) were also expressed in strains of spp., , , , , spp., serovar typhi, , and . No Lmmp-AP activity was detected in strains of spp. other than , , , , , , , , spp. other than , and spp. Because of the heterogeneous patterns of expression of Lmmp-APs, analysis of these enzymes could be useful for evolutionary studies of the enterobacterial genome and for precise phylogenetic positioning of enteric bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-255
1995-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-255.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-255&mimeType=html&fmt=ahah

References

  1. Ahmad S., Weisburg W. G., Jensen R. A. 1990; Evolution of aromatic amino acid biosynthesis and application to the fine-tuned phylogenetic positioning of enteric bacteria. J. Bacteriol 172:1051–1061
    [Google Scholar]
  2. Cocks G. T., Wilson A. C. 1972; Enzyme evolution in the Enterobacteriaceae. J. Bacteriol 110:793–802
    [Google Scholar]
  3. Edwards C. J., Innes D. J., Burns D. M., Beacham I. F. 1993; UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli indicate recent and early silencing events, respectively. FEMS Microbiol. Lett 114:293–298
    [Google Scholar]
  4. Groisman E. A., Saier M. H. Jr, Ochman H. 1992; Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 11:1309–1316
    [Google Scholar]
  5. Izard D., Gavini F., Trinel P. A., Krubwa F., Leclerc H. 1980; Contribution of DNA-DNA hybridization to the transfer of Enterobacter aerogenes to the genus Klebsiella as K. mobilis. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 1:257–263
    [Google Scholar]
  6. Kasahara M., Nakata A., Shinagawa H. 1991; Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J. Bacteriol 173:6770–6775
    [Google Scholar]
  7. Kier L. D., Weppelman R., Ames B. N. 1977; Resolution and purification of three periplasmic phosphatases of Salmonella typhimurium. J. Bacteriol 130:399–410
    [Google Scholar]
  8. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  9. Lawrence J. G., Ochman H., Hartl D. L. 1991; Molecular and evolutionary relationships among enteric bacteria. J. Gen. Microbiol 137:1911–1921
    [Google Scholar]
  10. Neu H. C. 1968; The 5’-nucleotidases and cyclic phosphodiesterases (3′-nucleotidases) of the Enterobacteriaceae. J. Bacteriol 95:1732–1737
    [Google Scholar]
  11. Ochman H., Wilson A. C. 1987; Evolutionary history of enteric bacteria,. 1649–1654 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology American Society for Microbiology; Washington, D. C:
    [Google Scholar]
  12. Pompei R., Cornaglia G., Ingianni A., Satta G. 1990; Use of a novel phosphatase test for simplified identification of species of the tribe Proteeae. J. Clin. Microbiol 28:1214–1218
    [Google Scholar]
  13. Pompei R., Ingianni A., Foddis G., Di Pietro G., Satta G. 1993; Patterns of phosphatase activity among enterobacterial species. Int. J. Syst. Bacteriol 43:174–178
    [Google Scholar]
  14. Pradel E., Boquet P. L. 1988; Acid phosphatases of Escherichia coli: molecular cloning and analysis of agp the structural gene for a periplasmic acid glucose phosphatase. J. Bacteriol 170:4916–1923
    [Google Scholar]
  15. Riccio M. L., Rossolini G. M., Lombardi G., Chiesurin A., Satta G. Unpublished data
  16. Rossolini G. M., Thaller M. C., Pezzi R., Satta G. 1994; Identification of an Escherichia coli periplasmic acid phosphatase containing a 27-kDa polypeptide component. FEMS Microbiol. Lett 118:167–174
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular cloning: a laboratory manual,. , 2. Cold Spring Harbor Laboratory; Cold Spring Harbor, N. Y.:
    [Google Scholar]
  18. Satta G., Pompei R., Grazi G., Cornaglia G. 1988; Phosphatase activity is a constant feature of all isolates of all major species of the family Enterobacteriaceae. J. Clin. Microbiol 26:2637–2641
    [Google Scholar]
  19. Schlesinger M. J., Olsen R. 1968; Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium cytoplasm. J. Bacteriol 96:1601–1605
    [Google Scholar]
  20. Thaller M. C. Unpublished data
  21. Thaller M. C., Berlutti F., Schippa S., Lombardi G., Rossolini G. M. 1994; Characterization and sequence of PhoC, the principal phosphateirrepressible acid phosphatase of Morganella morganii. Microbiology 140:1341–1350
    [Google Scholar]
  22. Thaller M. C., Lombardi G., Berlutti F., Schippa S., Rossolini G. M. 1995; Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterialacid phosphatase-encoding genes. Microbiology 141:147–154
    [Google Scholar]
  23. Uerkvitz W. 1988; Periplasmic nonspecific acid phosphatase II from Salmonella typhimurium LT2. J. Biol. Chem 263:15823–15830
    [Google Scholar]
  24. Uerkvitz W., Beck C. F. 1981; Periplasmic phosphatases in Salmonella typhimurium LT2. A biochemical, physiological, and partial genetic analysis of three nucleoside monophosphate dephosphorylating enzymes. J. Biol. Chem 256:382–389
    [Google Scholar]
  25. Weppelman R., Kier L. D., Ames B. N. 1977; Properties of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol 130:411–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-255
Loading
/content/journal/ijsem/10.1099/00207713-45-2-255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error