1887

Abstract

The taxonomic position of “ was studied by 16S rRNA gene sequencing and chemotaxonomic methods. This organism is a gram-negative, strictly aerobic rod and has a DNA guanine-plus-cytosine content of 61.4 mol%: the major isoprenoid quinone is ubiquinone 10, and the unusual cellular fatty acids 3-hydroxytetracosenoic acid (3-OH 24:1) and 3-hydroxyhexacosenoic acid (3-OH 26:1) are the major 3-hydroxy cellular fatty acids. A phylogenetic analysis based on 16S rRNA sequences revealed that “ IFO 13584 (T = type strain) occupies an independent position in the α subclass of the On the basis of our data, we propose that “ IFO 13584 should be transferred to the genus gen. nov. as sp. nov., nom. rev.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-16
1996-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-16.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-16&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coll. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  2. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 33:487–509
    [Google Scholar]
  3. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol 35:169–184
    [Google Scholar]
  4. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonasstrains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol 39:35–49
    [Google Scholar]
  5. Doudoroff M., Palleroni N. J. 1974 Genus I. Pseudomonas,. 217–243 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  7. Foster J. W. 1944; Microbiological aspects of riboflavin. J. Gen. Microbiol 47:27–41
    [Google Scholar]
  8. Fry N. K., Warwick S., Saunders N. A., Embley T. M. 1991; The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J. Gen. Microbiol 137:1215–1222
    [Google Scholar]
  9. Galanos C., Liideritz O., Westphal O. 1969; A new method for the extraction of R lipopolysaccharides. Eur. J. Biochem 9:245–249
    [Google Scholar]
  10. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Applic. Biosci 8:189–191
    [Google Scholar]
  11. Holt J. G., Krieg N. R., Sneath P. H. A, Staley J. T., Williams S. T.ed 1994 Bergey’s manual of determinative bacteriology. , 9th. Williams & Wilkins; Baltimore:
    [Google Scholar]
  12. Jantzen E., Sonesson A., Tangen T., Eng J. 1993; Hydroxy-fatty acid profiles of Legionella species: diagnostic usefulness assessed by principalcomponent analysis. J. Clin. Microbiol 31:1413–1419
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  14. Komuro T., Galanos C. 1988; Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J. Chromatogr 450:381–387
    [Google Scholar]
  15. Krieg N. R., Holt J. G.ed 1984 Bergey’s manual of systematic bacteriology 1 Williams & Wilkins; Baltimore:
    [Google Scholar]
  16. Leonard G. D., Kuehl W. M., Battey J. F. 1994 Plasmid DNA “Miniprep,”. 245–248 Basic methods in molecular biology, 2nd. Appleton & Lange; Norwalk, Conn:
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  19. Mikami H., Ishida Y. 1983; Post-column fluorometric detection of reducing sugars in high performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210
    [Google Scholar]
  20. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. AppL Microbiol 29:17–40
    [Google Scholar]
  21. Palleroni N. J. 1984 Genus 1. Pseudomonas,. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 Williams & Wilkins; Baltimore:
    [Google Scholar]
  22. Saiki R. K., Gelfand D. H., Stoflfel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  23. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  25. Sakane T., Yokota A. 1994; Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst. AppL Microbiol 17:128–134
    [Google Scholar]
  26. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int. J. Syst. Bacteriol 44:499–510
    [Google Scholar]
  27. Suzuki K., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol 33:188–200
    [Google Scholar]
  28. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol 37:52–59
    [Google Scholar]
  29. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol 33:135–165
    [Google Scholar]
  30. Urakami T., Oyanagi H., Araki H., Suzuki K., Komagata K. 1990; Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int. J. Syst. Bacteriol 40:434–442
    [Google Scholar]
  31. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int. J. Syst. Bacteriol 39:50–55
    [Google Scholar]
  32. van Bruggen A. H. C., Jochimsen K. N., Brown P. R. 1990; Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce. Int. J. Syst. Bacteriol 40:175–188
    [Google Scholar]
  33. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods Enzymol 153D:3–11
    [Google Scholar]
  34. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Anting G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxyflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol 39:319–333
    [Google Scholar]
  35. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol 40:384–398
    [Google Scholar]
  36. Woese C. R., Blanz P., Hahn C. M. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol 5:179–195
    [Google Scholar]
  37. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol 36:1251–1275
    [Google Scholar]
  38. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol 34:99–119
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the Ml3mpi8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  40. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull. Jpn. Federation Culture Collections 8:136–171
    [Google Scholar]
  41. Yokota A., Rodriguez M., Yamada Y., Imai K., Borowiak D., Mayer H. 1987; Lipopolysaccharides of Thiobacillus species containing lipid A with 2J3-diamino-2,3-dideoxyglucose. Arch. Microbiol 149:106–111
    [Google Scholar]
  42. Yokota A., Sakane T. 1991; Taxonomic significance of fatty acid compositions in whole cells and lipopolysaccharides in Rhizobiaceae. Inst. Ferment. Res. Commun. (Osaka) 15:57–75
    [Google Scholar]
  43. Yokota A., Yamada Y., Imai K. 1988; Lipopolysaccharides of ironoxidizing Leptospirillum ferrooxidans and Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol 34:27–37
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-16
Loading
/content/journal/ijsem/10.1099/00207713-46-1-16
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error