1887

Abstract

Two moderately halophilic sulfate-reducing bacteria were isolated from an African oil pipeline and designated strains SEBR 3640 and SEBR 2840 (T = type strain). Both of these strains possessed traits that define the genus . The cells of both isolates were motile curved rods that had a single polar flagellum and contained desulfoviridin, and both isolates utilized lactate, pyruvate, malate, fumarate, succinate, and ethanol in the presence of sulfate. Sulfite, thiosulfate, and elemental sulfur were also used as electron acceptors in the presence of lactate. However, both strains tolerated higher concentrations of NaCI (up to 17%) than all other species except , which tolerated a similar level of NaCI. The results of a 16S rRNA gene sequence analysis also placed the designated type strain, strain SEBR 2840, in the genus but revealed that this organism was significantly different from and all other validly described species. On the basis of our results, we propose that strain SEBR 2840 is a member of a new species of the genus . The type strain of is strain SEBR 2840 (= DSM 10636).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-3-710
1996-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/3/ijs-46-3-710.html?itemId=/content/journal/ijsem/10.1099/00207713-46-3-710&mimeType=html&fmt=ahah

References

  1. Adkins J. P., Cornell L. A., Tanner R. S. 1992; Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol. J 10:87–97
    [Google Scholar]
  2. Altshul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J. Mol. Biol 215:403–410
    [Google Scholar]
  3. Bastin E., Anderson B., Greer F. E., Merritt C. A., Moulton G. 1926; The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol 10:1270–1299
    [Google Scholar]
  4. Bernard F. P., Connan J., Magot M. 1992 Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques, paper SPE 24811. 467–476Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Inc Society of Petroleum Engineers, Inc.; Richardson, Tex:
    [Google Scholar]
  5. Bhupathiraju V. K., McInerney M. J., Knapp R. M. 1993; Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J 11:19–34
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J. Biochem. Physiol 37:911–917
    [Google Scholar]
  7. Boon J. J., De Leeuw J. W., Van Der Hoek G. J., Vosjan J. H. 1977; Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched B hydroxy fatty acids in Desulfovibrio desulfuricans. J. BacterioL 129:1183–1191
    [Google Scholar]
  8. Brefbrt G., Magot M., Ionesco H., Sebald M. 1977; Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:52–66
    [Google Scholar]
  9. Caumette P., Cohen Y., Matheron R. 1991; Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Sy st. Appl. Microbiol 14:33–38
    [Google Scholar]
  10. Combet-Blanc Y., Ollivier B., Streicher C., Patel B. K. C., Dwivedi P. P., Pot B., Prensier G., Garcia J. L. 1995; Bacillus thermoamylovorans sp* nov., a moderately thermophilic and amylolytic bacterium. Int. J. Syst. Bacteriol 45:9–16
    [Google Scholar]
  11. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol 172:3609–3619
    [Google Scholar]
  12. Edlund A., Nichols P. D., Roflfey R., White D. C. 1985; Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res 26:982–988
    [Google Scholar]
  13. Esnault G., Caumette P., Garcia J. L. 1988; Characterization of Desulfovibrio giganteus sp. nov., a sulfate-reducing bacterium isolated from a brackish coastal lagoon. Syst. Appl. Microbiol 10:147–151
    [Google Scholar]
  14. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  15. Guezennec J. G. 1991; Influence of cathodic protection of mild steel on the growth of sulphate-reducing bacteria at 35°C in marine sediments. Biofouling 3:339–348
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  17. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol 16:244–251
    [Google Scholar]
  18. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. 1992; Desulfovibrio longus sp. nov., a sulfatereducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol 42:398–403
    [Google Scholar]
  19. Nazina T. N., Ivanova A. E., Blagov A. V. 1992; Microbiological characteristics of oil formations of Mangyshlak Peninsula. Microbiology (Engl. Transl. Microbiologiya) 61:216–221
    [Google Scholar]
  20. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyldisulfur adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  21. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J. L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfatereducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol 41:74–81
    [Google Scholar]
  22. Olsen G. J., Overbeek R., Larsen N., Marsh T. H., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The Ribosomal Database Project. Nucleic Acids Res 20:Suppl.2199–2200
    [Google Scholar]
  23. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  24. Pfennig N., Widdel F., Triiper H. G. 1981 The dissimilatory sulfatereducing bacteria. 926–940 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes 1 Springer Verlag; New York:
    [Google Scholar]
  25. Pos熔ate J. R. 1984 Genus Desulfovibrio. 666–672 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  26. Redburn A. C., Patel B. K. C. 1994; Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol. Lett 115:33–38
    [Google Scholar]
  27. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfatereducing bacteria. Syst. Appl. Microbiol 15:554–556
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173:697–703
    [Google Scholar]
  29. White D. C., Bobbie R. J., Herron J. S., King J. D., Morrison S. J. 1979 Biochemical measurements of microbial mass and activity from environmental samples. 69–81 Native aquatic bacteria: enumeration, activity and ecology ASTM STP 695. American Society for Testing and Materials; Philadelphia:
    [Google Scholar]
  30. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia (Berlin) 40:51–62
    [Google Scholar]
  31. Widdel F. 1988 Microbiology and ecology of sulfateand sulfur-reducing bacteria. 469–585 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  32. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol 129:395–400
    [Google Scholar]
  33. Wilbur W. J., Lipman D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80:726–730
    [Google Scholar]
  34. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol 14:305–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-3-710
Loading
/content/journal/ijsem/10.1099/00207713-46-3-710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error