1887

Abstract

A new strictly anaerobic bacterium (strain BAL-1) has been isolated from a reed bed at Ballarat Goldfields in Australia. The organism grew by reducing arsenate [As(V)] to arsenite [As(III)], using acetate as electron donor and carbon source; acetate alone did not support growth. When BAL-1 was grown with arsenate as the terminal electron acceptor, acetate could be replaced by pyruvate, - and -lactate, succinate, malate, and fumarate but not by H, formate, citrate, glutamate, other amino acids, sugars, or benzoate. With acetate was the electron donor, arsenate could be replaced by nitrate or nitrite but not by sulfate, thiosulfate, or iron oxide. Nitrate was reduced to ammonia via nitrite. The doubling time for growth on acetate (5 mM) plus arsenate (5 mM) or nitrate (5 mM) was 4 h. The G+C content of the DNA is 49 mol%. The 16S rRNA sequence data for the organism support the hypothesis that this organism is phylogenetically unique and at present is the first representative of a new deeply branching lineage of the . This organism is described as gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1153
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1153.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1153&mimeType=html&fmt=ahah

References

  1. Ahmann D., Roberts A. L., Krumholz L. R., Morel F. M. M. 1994; Microbe grows by reducing arsenic. Nature (London) 371:750
    [Google Scholar]
  2. Bower C. E., Holm-Hansen T. 1980; A salicylate-hypochlorite method for determining ammonia in seawater. Can. J. Fish. Aquat. Sci 37:794–798
    [Google Scholar]
  3. Dowdle P. R., Laverman A. M., Oremland R. S. 1996; Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl. Environ. Microbiol 62:1664–1669
    [Google Scholar]
  4. Felsenstein J. 1991 PHYLIP version 3.4 University of Washington; Seattle:
    [Google Scholar]
  5. Fiala G., Woese C. R., Langworthy T. A., Stetter K. O. 1990; Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch. Microbiol 154:120–126
    [Google Scholar]
  6. Glaubig R. A., Goldberg S. 1988; Determination of inorganic arsenic (III) and arsenic (III plus V) using automated hydride-generation atomicabsorption spectrometry. Soil Sci. Soc. Am. J 52:536–537
    [Google Scholar]
  7. Ji G., Silver S. 1995; Bacterial resistance mechanisms for heavy metals of environmental concern. J. Ind. Microbiol 14:61–75
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  9. Lane D. J. 1991 16S/23S rRNA sequencing. 115–175 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  10. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  11. Laverman A. M., Blum J. S., Schaefer J. K., Phillips E. J. P., Lovley D. R., Oremland R. S. 1995; Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol 61:3556–3561
    [Google Scholar]
  12. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol 54:1472–1480
    [Google Scholar]
  13. Macy J. M., Lawson S., DeMoll-Decker H. 1993; Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl. Microbiol. Biotechnol 40:588–594
    [Google Scholar]
  14. Macy J. M., Michel T. A., Kirsch D. G. 1989; Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett 61:195–198
    [Google Scholar]
  15. McGeehan S. L., Naylor D. V. 1994; Sorption and redox transformation of arsenite and arsenate in two flooded soils. Soil Sci. Soc. Am. J 58:337–342
    [Google Scholar]
  16. Nelson D. C., Waterbury J. B., Jannasch H. W. 1984; DNA base composition and genome size of the prokaryotic symbiont in Riftia pachyptila(Pogonophora). FEMS Microbiol. Lett 24:267–271
    [Google Scholar]
  17. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W.-M., Macke T. J., Xing Y., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res 20:Suppl.2199–2200
    [Google Scholar]
  18. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16s rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  19. Rech S. A., Macy J. M. 1992; The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol 174:7316–7320
    [Google Scholar]
  20. Rosen B. P., Battacherjee H., Shi W. 1995; Mechanisms of metalloregulation of an anion-translocating ATPase. J. Bioenerg. Biomembr 27:85–91
    [Google Scholar]
  21. Rossini F. D., Wagman D. D., Evans W. H., Levine S., Jaffe I. 1952 Selected values of chemical thermodynamic properties U.S. Department of Commerce; Washington, D.C:
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  23. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev 41:100–180
    [Google Scholar]
  24. Voth-Beach L. M., Shrader D. E. 1985; Reduction of interferences in the determination of arsenic and selenium by hydride generation. Spectroscopy 1:60–65
    [Google Scholar]
  25. Woese C. R. 1992 Prokaryote systematics: the evolution of a science. 2–18 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes 1 Springer-Verlag; New York:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1153
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error