1887

Abstract

The sequences of the 16S rRNA gene of 40 strains of bacterial symbionts isolated from the nematodes spp. and seven bacterial symbionts of the nematodes spp. which were isolated from different geographical areas, as well as the type strain of , were determined and compared to each other and to the sequences of several reference strains of members of the . The data confirmed the separate status of the two genera of symbionts of entomopathogenic rhabditid nematodes. The symbionts of spp. clustered with the type strain of , while the symbionts of spp. grouped with species. clustered with the other species. Phylogenetic analysis of 15 almost complete 16S ribosomal DNA (rDNA) sequences of the symbionts indicated that there were several subclusters. The properties correlated with these subclusters are not yet apparent, although there may be some geographical and ecological correlations. For example, among the nematode-symbiotic bacteria, the members of subclusters I and III are from southeastern and midwestern North America, respectively, while the members of subclusters II and IV are primarily from Europe and Australia, respectively. The nonsymbiotic strains of form a highly homologous subcluster by themselves. The results of DNA-DNA hybridization studies performed with a few selected strains of five of the 16S rDNA subclusters support the existence of several genospecies within .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-402
1997-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-402.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-402&mimeType=html&fmt=ahah

References

  1. Akhurst R. J. 1983; Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect-pathogenic nematodes. Int. J. Syst. Bacteriol 33:38–45
    [Google Scholar]
  2. Akhurst R. J. 1980; Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol 121:303–309
    [Google Scholar]
  3. Akhurst R. J., Boemare N. E. 1988; A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J. Gen. Microbiol 134:1835–1845
    [Google Scholar]
  4. Bleakley B., Nealson K. H. 1988; Characterization of primary and secondary forms of Xenorhabdus luminescens strain Hm. FEMS Microbiol. Ecol 53:241–250
    [Google Scholar]
  5. Boemare N. E., Akhurst R. J. 1988; Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J. Gen. Microbiol 134:751–761
    [Google Scholar]
  6. Boemare N. E., Akhurst R. J., Mourant R. G. 1993; DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Al· luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol 43:249–255
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  8. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  9. Dunphy G. B., Webster J. M. 1988; Virulence mechanisms of Heterorhabditis heliothidis and its bacterial associate, Xenorhabdus luminescens, in non-immune larvae of the greater wax moth, Gallerìa mellonella. Int. J. Parasitol 18:729–737
    [Google Scholar]
  10. Dunphy G. B., Webster J. M. 1988; Lipopolysaccharides of Xenorhabdus nematophilus (Entobacteriaceae) and their hemocyte toxicity in nonimmune Galleria mellonella (Insecta: Lepidoptera) larvae. J. Gen. Microbiol 134:1017–1028
    [Google Scholar]
  11. Dunphy G. B., Rutherford T. A., Webster J. M. 1985; Growth and virulence of Steinemema glaseri influenced by different subspecies of Xenorhabdus nematophilus. J. Nematol 17:476–482
    [Google Scholar]
  12. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  13. Fanner J. J. III, Jorgensen J. H., Grimont P. A., Akhurst R. J., Poinar G. O., Ageron E., Pierce G. V., Smith J. A., Carter G. P., Wilson K. L., Hickman-Brenner F. W. 1989; Xenorhabdus luminescens (DNA hybridization group) from human clinical specimens. J. Clin. Microbiol 27:1594–1602
    [Google Scholar]
  14. Felsenstein j. 1993 PHYLIP (phylogeny inference package), version 3.5c. University of Washington; Seattle:
    [Google Scholar]
  15. Forst S., Nealson K. H. 1996; Molecular biology of the symbioticpathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol. Rev 60:21–43
    [Google Scholar]
  16. Grimont P. A., Steigerwalt A. G., Boemare N. E., Hickman-Brenner F. W., Deval C., Grimont F., Brenner D. 1984; Deoxyribonucleic acid relatedness and phenotypic study of the genus Xenorhabdus. Int. J. Syst. Bacteriol 34:378–388
    [Google Scholar]
  17. HuB V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  18. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y:
    [Google Scholar]
  20. Maidak B. L., Larsen N., McCaughey J., Overbeeck R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  21. Nishimura Y., Hagiwara A., Suzuki T., Yamanaka S. 1994; Xenorhabdus japonicus sp. nov. associated with the nematode Steinemema kushidai. Word J. Microbiol. Biotechnol 10:207–210
    [Google Scholar]
  22. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila·, its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  23. Rainey F. A., Ehlers R.-U., Stackebrandt E. 1995; Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int. J. Syst. Bacteriol 45:379–381
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  26. Thomas G. M., Poinar G. O. Jr. 1979; Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae. Int. J. Syst. Bacteriol 29:352–360
    [Google Scholar]
  27. Wayne L., Brenner D. J., Colwell R. R., Grimont P. A. D., Handler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-402
Loading
/content/journal/ijsem/10.1099/00207713-47-2-402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error