1887

Abstract

Abstract

A phylogenetic analysis of all validly published members of the including several new isolates from our laboratory, suggests three orders within this archaeal kingdom. The consist of both the rod-shaped, hyperthermophilic, neutrophilic representatives of the and the members of the new family The harbor all thermoacidophilic, coccoid organisms. The neutrophilic, hyperthermophilic cocci are members of a new order tentatively named This order comprises two families, the characterized by maximal growth temperatures of up to 100°C, and the new family for which optimal growth occurs at temperatures above 100°C.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-657
1997-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-657.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-657&mimeType=html&fmt=ahah

References

  1. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91:1609–1613
    [Google Scholar]
  2. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity in a Yellowstone National Park hot spring. 253 Abstracts of the 94th General Meeting of the American Society for Microbiology 1994
    [Google Scholar]
  3. Blöchl E., Burggraf S., Fiala G., Lauerer G., Huber G., Huber R., Rachel R., Segerer A., Stetter K. O., Völkl P. 1995; Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J. Microbiol. Biotechnol. 11:9–16
    [Google Scholar]
  4. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii, gen. and sp. nov. represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21
    [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  6. Burggraf S. Unpublished data
    [Google Scholar]
  7. Burggraf S., Stetter K. O., Rouviere P., Woese C. R. 1991; Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14:346–351
    [Google Scholar]
  8. DeLong E. F. 1992; Novel archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689
    [Google Scholar]
  9. DeLong E. F., Wu K. Y., Prezelin B. B., Jovine V. M. 1994; High abundance of Archaea in antarctic marine picoplankton. Nature 371:695–697
    [Google Scholar]
  10. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  11. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol. 8:106–113
    [Google Scholar]
  12. Fuchs T., Huber H., Burggraf S., Stetter K. O. 1996; 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst. Appl. Microbiol. 19:56–60
    [Google Scholar]
  13. Fuchs T., Huber H., Teiner K., Burggraf S., Stetter K. O. 1995; Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst. Appl. Microbiol. 18:560–566
    [Google Scholar]
  14. Fuhrman J. A., McCallum K., Davis A. A. 1992; Novel major archaebacterial group from marine plankton. Nature 356:148–149
    [Google Scholar]
  15. Hafenbradl D. Unpublished data
    [Google Scholar]
  16. Huber R. Unpublished data
    [Google Scholar]
  17. Huber R., Burggraf S., Mayer T., Barns S. M., Rossnagel P., Stetter K. O. 1995; Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58
    [Google Scholar]
  18. Huber R., Stetter K. O. 1992; The order Thermoproteales. 677–683 Balows A. The prokaryotes, 2nd ed.. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. 115–175 Stackebrandt E., Goodfellow M. Nucleic acid techniques in bacterial systematics J. Wiley & Sons; Chichester, U.K.:
    [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  23. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. 1986; Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337–365
    [Google Scholar]
  24. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol. 14:245–253
    [Google Scholar]
  25. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  26. Saiki R. K., Scharf S. J., Faloona F., Mullis K. B., Hom G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  27. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama T. 1996; Aeropyrum pemix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int. J. Syst. Bacteriol. 46:1070–1077
    [Google Scholar]
  28. Stetter K. O. 1986; Diversity of extremely thermophilic archaebacteria. 40–74 Brock T. D. Thermophiles: general, molecular and applied microbiology John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
  29. Stetter K. O. 1989; Order III. Sulfolobales ord. nov.. 2250–2253 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  30. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol. 4:535–551
    [Google Scholar]
  31. Strunk O., Gross O., Reichel B., May M., Herrmann S., Stuckmann N., Nonhoff B., Lenke M., Ginhart A., Vilbig A., Wesytram R., Ludwig T., Bode A., Schleifer K. H., Ludwig W. ARB: a software environment for sequence data Nucleic Acids Res., in press;
    [Google Scholar]
  32. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., Van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  33. Woese C. R., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artefacts. Syst. Appl. Microbiol. 14:364–371
    [Google Scholar]
  34. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
  35. Zillig W. 1989; Order II. Thermoproteales. 2240–2246 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  36. Zillig W., Holz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172:3959–3965
    [Google Scholar]
  37. Zillig W., Stetter K. O., Prangishvilli D., Schäfer W., Wunderl S., Janekovic D., Holz I., Palm P. 1982; Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1. Abt. Orig. C 3:304–317
    [Google Scholar]
  38. Zillig W., Stetter K. O., Schafer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1. Abt. Orig. C 2:205–227
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-657
Loading
/content/journal/ijsem/10.1099/00207713-47-3-657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error