1887

Abstract

Psychrophilic, yellow-pigmented, seawater-requiring bacteria isolated from the pycnocline of meromictic Burton Lake and from sea ice cores obtained in the Vestfold Hills (68°S, 78°E) in eastern Antarctica were characterized. Phenotypic analysis showed that the strains isolated formed two distinct taxa. The first taxon included nonmotile, nutritionally fastidious strains that were isolated from the pycnocline of Burton Lake. The cells of these strains were morphologically variant, ranging from vibrioid to ring shaped to coiled and filamentous; in addition, the strains were unable to metabolize carbohydrates or polysaccharides and had DNA G+C contents of 27 to 29 mol%. The strains of the second taxon, which were isolated from sea ice cores and from ice algal biomass, were saccharolytic, exhibited rapid gliding motility, were rodlike to filamentous, and had DNA G+C contents of 36 to 38 mol%. A 16S ribosomal DNA (rDNA) sequence analysis revealed that the two Antarctic taxa formed related but distinct lineages within the [] rRNA branch of the family . The levels of 16S rDNA sequence similarity between the taxa were 90.5 to 91.3%, while the levels of similarity to other members of the [] rRNA branch were 85 to 90%. The whole-cell lipid profiles of the Antarctic strains were mainly comprised of branched and unbranched monounsaturated Cto Cfatty acids. The presence of significant levels of the lipids a15:1 ω 10c and a17:1 ω 7c appeared to be useful biomarkers for the new Antarctic taxa and for differentiating these organisms from other members of the family . On the basis of polyphasic taxonomic data we propose that the new taxa are novel bacterial species designated gen. nov., sp. nov. (type strain, ACAM 188) and gen. nov., sp. nov. (type strain, ACAM 536).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-670
1997-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-670.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-670&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Grimont P. A. D. 1989; Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacterpsychrophilus sp. nov., nom. rev., and Flexibacter maritimus. Wakabayashi, Hikida, and Masumura 1986. Int. J. Syst. Bacteriol. 39:346–354
    [Google Scholar]
  2. Bernardet J.-F., Keroualt E., Michel C. 1994; Comparative study on Flexibacter maritimus strains isolated from farmed sea bass (Dicentrarchus labrax) in France. Fish Pathol. 29:105–111
    [Google Scholar]
  3. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Bacteriol. 46:128–148
    [Google Scholar]
  4. Bowman J. P. Unpublished data
    [Google Scholar]
  5. Bowman J. P., Austin J. J., Cavanagh J., Sanderson K. 1996; Novel Psychrobacter species from Antarctic ornithogenic soil. Int. J. Syst. Bacteriol. 46:841–848
    [Google Scholar]
  6. Bowman J. P., Nichols D. S. Biodiversity and ecophysiology of bacteria associated with sea ice. Antarct. Sci. in press
    [Google Scholar]
  7. Burke C. M., Burton H. R. 1988; The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica. Hydrobiologica 165:1–11
    [Google Scholar]
  8. Damelin L. H., Dykes G. A., Vonholy A. 1995; Biodiversity of lactic acid bacteria from food-related ecosystems. Microbios 83:13–22
    [Google Scholar]
  9. Dees S. B., Moss C. W., Hollis D. G., Weaver R. E. 1986; Chemical characterization of Flavobacterium odoratum, Flavobacterium breve, and Flavobacterium-like groups IIe, IIh, and IIF. J. Clin. Microbiol. 23:267–273
    [Google Scholar]
  10. Delille D. 1992; Marine bacterioplankton at the Weddell Sea ice edge, distribution of psychrophilic and psychrotrophic populations. Polar Biol. 12:205–210
    [Google Scholar]
  11. Delille D. 1993; Seasonal changes in the abundance and composition of marine heterotrophic bacterial communities in an Antarctic coastal area. Polar Biol. 13:463–470
    [Google Scholar]
  12. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46:550–558
    [Google Scholar]
  13. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol. 43:77–83
    [Google Scholar]
  14. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8:87–91
    [Google Scholar]
  15. Fautz E., Grotjahn L., Reichenbach H. 1981; Hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria and flavobacteria. 127–134 Reichenbach H., Weeks O. B. The Flavobacterium-Cytophaga group Verlag-Chemie; Weinheim, Germany:
    [Google Scholar]
  16. Felsenstein J. 1993 PHYLIP (phytogeny inference package), version 3.57c University of Washington; Seattle:
    [Google Scholar]
  17. Franzmann P. D., Deprez P. P., McGuire A. J., McMeekin T. A., Burton H. R. 1990; The heterotrophic bacterial microbiota of Burton Lake, Antarctica. Polar Biol. 10:261–264
    [Google Scholar]
  18. Gosink J. J., Irgens R. L., Staley J. T. 1993; Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol. Ecol. 102:85–90
    [Google Scholar]
  19. Gosink J. J., Staley J. T. 1995; Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61:3486–3489
    [Google Scholar]
  20. Grossmann S., Dieckmann G. S. 1994; Bacterial standing stock, activity, and carbon production during formation, and growth of sea ice in the Weddell Sea, Antarctica. Appl. Environ. Microbiol. 60:2746–2753
    [Google Scholar]
  21. Gutell R. R. 1994; Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 22:3502–3507
    [Google Scholar]
  22. Hansen G. H., Bergh Ø., Michaelsen J., Knappskog D. 1992; Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int. J. Syst. Bacteriol. 42:451–458
    [Google Scholar]
  23. Helmke E., Weyland H. 1995; Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 11:269–287
    [Google Scholar]
  24. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  25. Irgens R. L., Suzuki I., Staley J. T. 1989; Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr. Microbiol. 18:261–265
    [Google Scholar]
  26. Kottmeier S. T., Sullivan C. W. 1990; Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones. Deep Sea Res. 37:1311–1330
    [Google Scholar]
  27. Kottmeier S. T., Grossi S. M., Sullivan C. W. 1987; Sea ice microbial communities. VIII. Bacterial production in annual sea ice of McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 35:175–186
    [Google Scholar]
  28. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J. Bacteriol. 85:1183–1184
    [Google Scholar]
  29. Lewin R. A., Lounsbery D. M. 1969; Isolation, cultivation, and characterization of flexibacteria. J. Gen. Microbiol. 58:145–170
    [Google Scholar]
  30. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  31. McConville M. J., Weatherbee R. 1983; The bottom-ice microalgal community from annual ice in the inshore waters of East Antarctica. J. Phycol. 19:431–439
    [Google Scholar]
  32. McGuire A. J. 1985 The microbiota of Burton Lake, Vestfold Hills, Antarctica. Honors thesis Department of Agricultural Science, University of Tasmania; Hobart, Tasmania, Australia:
    [Google Scholar]
  33. McGuire A. J., Franzmann P. D., McMeekin T. A. 1987; Flectobacillus glomeratus sp. nov., a curved, non-motile, pigmented bacterium isolated from Antarctic marine environments. Syst. Appl. Microbiol. 9:265–272
    [Google Scholar]
  34. Mencier F. 1972; Methode simple et rapide de mise en evidence des microorganismes producteurs de dextranase. Ann. Inst. Pasteur (Paris) 122:153–157
    [Google Scholar]
  35. Naganuma T., Horikoshi K. 1994; Cellular fatty acids of marine, agarolytic bacteria, gliding bacteria. Syst. Appl. Microbiol. 17:125–127
    [Google Scholar]
  36. Nakagawa Y., Yamasoto K. 1996; Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinolabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int. J. Syst. Bacteriol. 46:599–603
    [Google Scholar]
  37. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria. Antarct. Sci. 5:149–160
    [Google Scholar]
  38. Nichols D. S., Nichols P. D., McMeekin T. A. 1995; Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea ice. Sci. Prog. 78:311–347
    [Google Scholar]
  39. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyldisulphide adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  40. Overmann J., Pfennig N. 1989; Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch. Microbiol. 152:401–406
    [Google Scholar]
  41. Oyaizu H., Komagata K. 1981; Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium-Cytophaga complex. J. Gen. Appl. Microbiol. 27:57–107
    [Google Scholar]
  42. Putt M., Miceli G., Stoecker D. 1994; Association of bacteria with Phaeocystis sp. in McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 105:179–189
    [Google Scholar]
  43. Shivja S., Ray M. K., Rao N. Shyamda, Saisree L., Jagannadham M. V., Kumar G. Seshu, Reddy G. S. N., Bhargawa P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schumacher Oasis, Antarctica. Int. J. Syst. Bacteriol. 42:102–106
    [Google Scholar]
  44. Skerratt J. H., Nichols P. D., Mancuso C. A., James S. R., Dobson S. J., McMeekin T. A., Burton H. 1991; The phospholipid ester-linked fatty acid composition of members of the family Halomonadaceae and genus Flavobacterium. A chemotaxonomic guide. Syst. Appl. Microbiol. 14:8–13
    [Google Scholar]
  45. Skerratt J. H., Nichols P. D., Bowman J. P., Sly L. I. 1992; Occurrence and significance of long-chain (ω-1)-hydroxy fatty acids in methane utilizing bacteria. Org. Geochem. 18:92–99
    [Google Scholar]
  46. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J. Microbiol. Methods 5:139–156
    [Google Scholar]
  47. Staley J. T., Fuerst J. A., Giovannoni S., Schlesner H. 1991; The order Planctomycetales and the genera Planctomyces, Pirellula, Gemmata, and Isosphaera. 3710–3731 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes, 2nd ed.. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  48. Sullivan C. W., Palmisano A. C. 1984; Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl. Environ. Microbiol. 47:788–795
    [Google Scholar]
  49. Vandamme P., Vancanneyt M., Hove K. Van, Mutters R., Hommez J., Dewhirst F., Paster B., Kersters K., Falsen E., Devriese L. A., Bisgaard M., Hinz K.-H., Mannheim W. 1994; Ornithobacterium rhinotracheale gen. nov., sp. nov., isolated from the avian respiratory tract. Int. J. Syst. Bacteriol. 44:24–37
    [Google Scholar]
  50. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  51. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologica 40:51–62
    [Google Scholar]
  52. Yabuuchi E., Moss C. W. 1982; Cellular fatty acid composition of strains of three species of Sphingobacterium gen. nov. and Cytophaga johnsonae. FEMS Microbiol. Lett. 13:87–91
    [Google Scholar]
  53. Zdanowsky M. K., Donachie S. P. 1993; Bacteria in the sea ice zone between Elephant Island and the South Orkneys during the Polish sea-ice zone expedition, (December 1988 to January 1989). Polar Biol. 13:245–254
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-670
Loading
/content/journal/ijsem/10.1099/00207713-47-3-670
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error