1887

Abstract

Phylogenetic analyses of 165 rRNA gene sequences showed that the Gramnegative aromatic- and chloroaromatic-degrading sp. strain HV3 carrying the mega-plasmid pSKY4 belongs to the genus . The 165rRNA sequence is most related to strains ATCC 33790(98-5%) and SR3 (98.4%) and sp. SS86 (98.4%). The G+C content was 64 mol%, and the DNA-DNA-hybridization-based relative homology of strain HV3 to the ATCC 33790and RA2 was 59.6% and 35.9%, respectively. The results showed that although strain HV3 is related to it differs in certain characteristics. It is therefore proposed to reclassify sp. strain HV3 as sp. HV3.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-1057
1998-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-1057.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-1057&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Holder-Franklin M. A. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81461–466
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12133–142
    [Google Scholar]
  3. De Vos P. D., Landschoot A. V., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B, Kersters K., Lizzaraga P., De Ley J. D. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas- like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 3935–49
    [Google Scholar]
  4. Dees S. B., Carlone G. M., Hollis D., Moss W. 1985; Chemical and phenotypiccharacteristics of Flavobacterium thalpophilum compared with those of other Flavobacterium and Sphingo- bacterium species. Int J Syst Bacteriol 3516–22
    [Google Scholar]
  5. Ederer M. M., Crawford R. L., Herwig R. P., Orser C. S. 1997; PCP degradation ismediated by closely related strains of the genus Sphingomonas . Mol Ecol 639–49
    [Google Scholar]
  6. Edwards U., Rogall T., Bl?cker H., Emde M., &. B?ttger E. C. 1989; Isolation and direct complete determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 177843–7853
    [Google Scholar]
  7. Fredrickson J. K., Balkwill D. L., Drake G. R., Romine M. F., Ringelberg D. B., White D. C. 1995; Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 611917–1922
    [Google Scholar]
  8. Galtier N., Gouy M. 1994; Inferring phylogenies from DNA sequences of unequal base compositions. Proc Natl Acad Sci USA 9211317–11321
    [Google Scholar]
  9. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4184–192
    [Google Scholar]
  10. Janke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 1561–73
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism, pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Ka J. O., Holben W. E., Tiedje J. M. 1994; Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)- degrading bacteria isolated from 2,4-D-treated field soil. Appl Environ Microbiol 601106–1115
    [Google Scholar]
  13. Karlson U., Rojo F., van Elsas J. D., Moore E. 1995; Genetic and serological evidence for the recognition of four penta- chlorophenol-degrading bacterial strains as a species of the genus Sphingomonas . Syst Appl Microbiol 18539–548
    [Google Scholar]
  14. Kersters K., Ludwig W., Vancanneyt M., De Vos P., Gillis M., Schleifer K.-H. 1996; Recent changes in the classification of the pseudomonads : and overview. Syst Appl Microbiol 19465–467
    [Google Scholar]
  15. Kilpi S., Backstr?m V., Korhola M. 1983; Degradation of catechol, methylcatechols by Pseudomonas sp. HY3. FEMS Microbiol Lett 181–5
    [Google Scholar]
  16. Kilpi S., Himberg K., Yrjala K., Backstrom V. 1988; The degradation of biphenyl and chlorobiphenyls by mixed bacterial cultures. FEMS Microbiol Lett 5319–26
    [Google Scholar]
  17. Kilpi S., Backstr?m V., Korhola M. 1980; Degradation of 2- methyl- 4-chlorophenoxyacetic acid (MCPA), 2,4-dichloro- phenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV3. FEMS Microbiol Lett 8177–182
    [Google Scholar]
  18. Maidak B. L., Larsen N., McCaughey M. J., Overbeck R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acids Res 223483–3487
    [Google Scholar]
  19. Mesbah M., Whitman W. B. 1989; Measurement of deoxy- guanosine/thymidine ratios in complex mixtures by high performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479297–306
    [Google Scholar]
  20. Nohynek L. J., Nurmiaho-Lassila E.-L., Suhonen E. L., Busse H.-J., Mohammadi M., Hantula J., Rainey F., Salkinoja-Salonen M. 1996; Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 461042–1055
    [Google Scholar]
  21. Nohynek L. J., Suhonen E., Nurmiaho-Lassila E.-L., Hantula J., Salkinoja-Salonen M. 1995; Description of four penta- chlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18527–538
    [Google Scholar]
  22. Puhakka J. A., Herwig R. P., Koro P. M., Wolfe G. V., Ferguson J. F. 1995; Biodégradation of chlorophenols by mixed and pure cultures from a fluidized bed reactor. Appl Microbiol Biotechnol 42951–957
    [Google Scholar]
  23. Ridell J., Siitonen A., Paulin L., Lindroos O., Korkeala H., Albert M. J. 1995; Characterization of Hafnia alvei by biochemical tests, random amplified polymorphic, DNA, PCR, and partial sequencing of 16S rRNA gene. J Clin Microbiol 332372–2376
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4406–425
    [Google Scholar]
  25. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16227–238
    [Google Scholar]
  26. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov. and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45334–341
    [Google Scholar]
  27. Takeuchi M., Sawala H., Oyiazu H., &. Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria . Int J Syst Bacteriol 44308–314
    [Google Scholar]
  28. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25125–128
    [Google Scholar]
  29. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66199–202
    [Google Scholar]
  30. Van Brüggen A. H. C., Jochimsen K. N., Brown P. R. 1990; Rhizomonas suberifaciens gen. nov. sp. nov., the causal agent of corky root of lettuce. Int J Syst Bacteriol 40175–188
    [Google Scholar]
  31. Van Brüggen A. H. C., Jochimsen K. N., Steinberger E. M., Segers P., Gillis M. 1993; Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int J Syst Bacteriol 431–7
    [Google Scholar]
  32. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10569–570
    [Google Scholar]
  33. Visuvanathan S. M., Moss T., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 1059–74
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37463–464
    [Google Scholar]
  35. Wilson M., Lindow S. E. 1993; Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83117–123
    [Google Scholar]
  36. Wittich R.-M., Wilkes H., Sinnwell V., Francke W., Fortnagel P. 1992; Metabolism of dibenzo-p-dioxin by Sphingomonas sp. Strain RW1. Appl Environ Microbiol 581005–1010
    [Google Scholar]
  37. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov. and two genospecies of the genus Sphingomonas . Microbiol Immunol 3499–119
    [Google Scholar]
  38. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb, nov., Sphingobacterium multivorum comb, nov., Sphingobacterium mizutae sp. nov. and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and Hb. Int J Syst Bacteriol 33580–598
    [Google Scholar]
  39. Yrjälä K., Paulin L., Romantschuk M. 1997; Novel organization of catechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol Lett 154403–408
    [Google Scholar]
  40. Yrjälä K., Paulin L., Kilpi S., Romantschuk M. 1994; Cloning of cmpE, a plasmid-borne catechol 2,3-dioxygenase-encoding gene from the aromatic- and chloroaromatic-degrading Pseudomonas sp. HV3. Gene 138119–121
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-1057
Loading
/content/journal/ijsem/10.1099/00207713-48-3-1057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error