1887

Abstract

An autotrophic, extremely thermophilic methanogen (ME) was isolated from a deep-sea hydrothermal chimney sample collected on the Mid-Atlantic Ridge at a depth of 3000 m. The heavily flagellated cells are motile and coccoid shaped. The new strain grows between 55 and 91 °C, with an optimum growth temperature at 85 °C. The optimum pH for growth is 6.5, and the optimum sea salt concentration for growth is around 25 g I. The organism uses H and CO as the only substrate for growth and methane production. Tungsten, selenium and yeast extract stimulate growth significantly. In the presence of CO and H, the organism reduces elemental sulphur to hydrogen sulphide. The G+C content of the genomic DNA is 33 mol%. As determined by 16S gene sequence analysis, this organism is closely related to strain JAL-1. However, no significant homology was observed between them with DNA-DNA hybridization. It is proposed that this organism should be placed in a new species, . The type strain is ME(-DSM 11812.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-3-913
1998-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/3/ijs-48-3-913.html?itemId=/content/journal/ijsem/10.1099/00207713-48-3-913&mimeType=html&fmt=ahah

References

  1. Burggraf S., Fricke H., Neuner A., Kristjansson J., Rouviere P., Mandelco L., Woese C. R., Stetter K. O. 1990; Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 1333–38
    [Google Scholar]
  2. Charbonnier F., Forterre P. 1994; Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria. J Bacteriol 1761251–1259
    [Google Scholar]
  3. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48621–626
    [Google Scholar]
  4. Harmsen H. J. M., Prieur D., Jeanthon C. 1997; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichments of thermophilic subpopulations. Appl Environ Microbiol 632876–2883
    [Google Scholar]
  5. Hilpert R., Winter J., Hammes W., Kandier O. 1981; The sensitivity of archaebacteria to antibiotics. Zentbl Bakteriol Hyg I Abt Orig C211–20
    [Google Scholar]
  6. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 331225–1228
    [Google Scholar]
  7. Huber H., Thomm M., König H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus, a novel thermophilic litho- trophic methanogen. Arch Microbiol 13247–50
    [Google Scholar]
  8. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘ Thermotogales' . Arch Microbiol 154105–111
    [Google Scholar]
  9. Ivanova T. L., Turova T. P., Antonov A. S. 1988; DNA-DNA hybridization studies on some purple non sulfur bacteria. Syst Appl Microbiol 10259–263
    [Google Scholar]
  10. Johnson J. L. 1984; DNA reassociation and RNA hybridization of bacterial nucleic acids. In Bergey's Manual of Systematic Bacteriology, vol 1 pp 8–11 Edited by Krieg N. R. J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136254–261
    [Google Scholar]
  12. Jones W. J., Stugard C. E., Jannasch H. W. 1989; Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151214–318
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Krasnov S. G., Cherkashev G. A., Stepanova T. V. 10 other authors 1995; Detailed geological studies of hydrothermal fields in the North Atlantic. In Hydrothermal Vents and Processes pp 43–64 Edited by Parson L. M., Walker C. L., Dixon D. R. London: The Geological Society;
    [Google Scholar]
  15. Kristjánsson J. K., Hjörleifsdóttir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-l. Syst Appl Microbiol 1744–50
    [Google Scholar]
  16. Kurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., Kristjansson J. K., Stetter K. O. 1991; Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156239–247
    [Google Scholar]
  17. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project. Nucleic Acids Res 2482–85
    [Google Scholar]
  18. Marmur J., Doty D. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5109–118
    [Google Scholar]
  19. Miller T. L., Wolin M. J. 1974; A serum bottle modification of Hungate technique for cultivating obligate anaerobes. Appl Environ Microbiol 27985–987
    [Google Scholar]
  20. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 1041–48
    [Google Scholar]
  21. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemo- organotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 14163–69
    [Google Scholar]
  22. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, 2nd. edn pp 926–940 Edited by Starr M., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York: Springer;
    [Google Scholar]
  23. Reysenbach A.-L., Giver L. J., Wickham G. S., Pace N. R. 1992; Differential amplification of rRNA by polymerase chain reaction. Appl Environ Microbiol 583417–3418
    [Google Scholar]
  24. Sambrook J., Fritch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual,, 2nd. edn Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial surface layers by freeze-etching, metal-shadowing, negative staining and ultrathin sectioning. Methods Microbiol 2029–60
    [Google Scholar]
  26. Sleytr U. B., Messner P., Pum D., Sára D. 1996 Crystalline Bacterial Cell Surface Proteins. London: Academic Press;
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44846–849
    [Google Scholar]
  28. Stetter K. O. 1996a; Hyperthermophilic procaryotes. FEMS Microbiol Rev 18149–158
    [Google Scholar]
  29. Stetter K. O. 1996b; Hyperthermophiles in the history of life. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?) pp 1–18 Edited by Bock G. R., Goode J. A. Chichester: Wiley;
    [Google Scholar]
  30. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate- reducing bacteria. In The Prokaryotes, 2nd. edn pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  31. Woese C. R., Kandier O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 874576–4579
    [Google Scholar]
  32. Zehnder A. J. B., Wuhrman K. 1976; Titanium(III) citrate as a non-toxic, oxidation-reduction buffering system for the culture of obligate anaerobes. Science 1941165–1166
    [Google Scholar]
  33. Zhao H., Wood A. G., Widdel F., Bryant M. P. 1988; An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch Microbiol 150178–183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-3-913
Loading
/content/journal/ijsem/10.1099/00207713-48-3-913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error