1887

Abstract

The membrane lipids of , , and were fractionated on DEAE-cellulose and purified by chromatography on silica gel and/or preparative TLC. The lipid structures were elucidated by chemical and chromatographic means. The polar lipid composition of the four listeria species was similar. Phospholipids predominated. They consisted of phosphatidylglycerol, -lysylphosphatidylglycerol, cardiolipin [bis(phosphatidyl)glycerol] and -lysylcardiolipin. A phospholipid more polar than cardiolipin, possibly two -lysyl derivatives of it, -glycero-1-phosphoglycolipid, its -alanyl derivative, and polyprenol phosphate were also detected. Towards the end of exponential growth, the relative amounts of cardiolipin and -lysylcardiolipin increased, approaching 47–78% lipid phosphorus with a ratio of -lysylcardiolipin to cardiolipin of 0·25–1·6. As shown by fast atom bombardment-mass spectrometry, cardiolipin and -lysylcardiolipin consisted of five molecular species due to various fatty acid combinations. -Lysylcardiolipin has so far not been found in nature. It belongs to the recently discovered class of substituted cardiolipins. Its occurrence in the four listeria species tested shows that it is a characteristic lipid component of the line of descent. Further studies on the lipid pattern of members of the other descent line are required to decide whether lysylcardiolipin can serve as a genus-specific chemotaxonomic marker for listeriae.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-653
1999-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-653.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-653&mimeType=html&fmt=ahah

References

  1. Baer E., Kates M. 1950; Migration of esters of glycero-phosphoric acid. II. The acid and alkaline hydrolysis of l-α-lecithins. J Biol Chem 185:615–623
    [Google Scholar]
  2. Brotherus J., Renkonen O., Herrmann J., Fischer W. 1974; Novel stereoconfiguration in lysobisphosphatidic acid of cultured BHK-cells. Chem Phys Lipids 13:178–182
    [Google Scholar]
  3. Bruckner H., Wittner R., Godei H. 1991; Fully automated separation of Dl-amino acids derivatized with O-phthaldialdehyde together with N-isobutyryl-cysteine. Application to food samples. Chromatographia 32:383–388
    [Google Scholar]
  4. Cabacungan E., Pieringer R. A. 1981; Mode of elongation of the glycerophosphate polymer of membrane LTA of Streptococcus faecium (Streptococcus faecalis ATCC 9790). J Bacteriol 147:75–79
    [Google Scholar]
  5. Collins M. D., Wallbanks S., Lane D. J., Shah J., Nietupski R., Smida J., Dorsch M., Stackebrandt E. 1991; Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:240–246
    [Google Scholar]
  6. Deroo P. W. 1969 MSc thesis University of Western Ontario;
    [Google Scholar]
  7. De Siervo A. J., Salton M. R. J. 1971; Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus. Biochim Biophys Acta 239:280–292
    [Google Scholar]
  8. Emdur L. I., Chiu T. H. 1974; Turnover of phosphatidyl-glycerol in Streptococcus sanguis. Biochem Biophys Res Commun 59:1137–1144
    [Google Scholar]
  9. Feresu S. B., Jones D. 1988; Taxonomic studies on Brochothrix Erysipelothrix Listeria and atypical lactobacilli. J Gen Microbiol 134:1165–1183
    [Google Scholar]
  10. Fischer W. 1977a; The polar lipids of group B streptococci. I. Glycosylated diphosphatidylglycerol, a novel glyco-phospholipid. Biochim Biophys Acta 487:74–88
    [Google Scholar]
  11. Fischer W. 1977b; The polar lipids of group B streptococci. II. Composition and positional distribution of fatty acids. Biochim Biophys Acta 487:89–104
    [Google Scholar]
  12. Fischer W. 1982; d-Alanine ester-containing glycerophospho-glycolipids in the membrane of Gram-positive bacteria. Biochim Biophys Acta 711:372–375
    [Google Scholar]
  13. Fischer W. 1990; Bacterial phosphoglycolipids and LTAs. Glycolipids, Phosphoglycolipids and Sulfoglycolipids123–234 Kates M. 6 of Handbook of Lipid Research, edited by D. J. Hanahan New York & London: Plenum;
    [Google Scholar]
  14. Fischer W. 1997; Pneumococcal lipoteichoic acid and teichoic acid. Microbial Drug Resistance 3:309–325
    [Google Scholar]
  15. Fischer W., Landgraf H. R. 1975; Glycerophosphoryl phosphatidyl kojibiosyl diacylglycerol, a novel phospho-glucolipid from Streptococcus faecalis. Biochim Biophys Acta 380:227–244
    [Google Scholar]
  16. Fischer W., Arneth-Seifert D. 1998; d-Alanylcardiolipin, a major component of the unique lipid pattern of Vagococcus fluvialis. J Bacteriol 180:2950–2957
    [Google Scholar]
  17. Fischer W., Ishizuka I., Landgraf H. R., Herrmann J. 1973a; Glycerophosphoryl diglucosyl diglyceride, a new phospho-glycolipid from streptococci. Biochim Biophys Acta 296:527–545
    [Google Scholar]
  18. Fischer W-., Landgraf H. R., Herrmann J. 1973b; Phosphatidyl-diglucosyl diglyceride from streptococci and its relationship to other polar lipids. Biochim Biophys Acta 306:353–367
    [Google Scholar]
  19. Fischer W., Nakano M., Laine R. A., Bohrer W. 1978; On the relationship between glycerophosphoglycolipids and lipoteichoic acids in Gram-positive bacteria. I. The occurrence of phosphoglycolipids. Biochim Biophys Acta 528:288–297
    [Google Scholar]
  20. Fischer W., Koch H. U., Haas R. 1983; Improved preparation of LTAs. Eur J Biochem 133:523–530
    [Google Scholar]
  21. Fischer W., Mannsfeld T., Hagen G. 1990; On the basic structure of poly(glycerophosphate) LTAs. Biochem Cell Biol 68:33–43
    [Google Scholar]
  22. Fischer W., Peter-Katalinić J., Hartmann R., Egge H. 1994; (5)-2-Amino-1,3-propanediol-3-phosphate-carrying diradylglyceroglycolipids. Novel major membrane lipids of Clostridium innocuum. Eur J Biochem 223:879–892
    [Google Scholar]
  23. Glaser L., Lindsay B. 1974; The synthesis of LTA carrier. Biochem Biophys Res Commun 59:1131–1136
    [Google Scholar]
  24. Gould R. M., Lennarz W. J. 1967; Biosynthesis of aminoacyl derivatives of phosphatidylglycerol. Biochem Biophys Res Commun 26:510–515
    [Google Scholar]
  25. Gould R. M., Lennarz W. J. 1970; Metabolism of phosphatidylglycerol and lysylphosphatidylglycerol in Staphylo-coccus aureus. J Bacteriol 104:1135–1144
    [Google Scholar]
  26. Grassi M., Supp M. 1985; d-Alanine. Methods of Enzymatic Analysis, 3. 8 Metabolites 3: Lipids, Amino Acids and Related Compounds 336–340 Bergmeyer H. U., Bergmeyer J., Grassi M. Weinheim: VCH;
    [Google Scholar]
  27. de Haas G. H., Postema N. M., Nieuwenhuizen W., van Deenen L. L. M. 1968; Purification and properties of phospho-lipase A from porcine pancreas. Biochim Biophys Acta 159:103–117
    [Google Scholar]
  28. Haest C. W. M., de Gier J., Op Den Kamp J. A. F., Battels V., van Deenen L. L. M. 1972; Changes in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta 255:720–733
    [Google Scholar]
  29. Hether N. W., Jackson L. L. 1983; LTA from Listeria monocytogenes. J Bacteriol 156:809–817
    [Google Scholar]
  30. Hopfer U., Lehninger A. L., Lennarz W. J. 1970; The effect of the polar moiety of lipids on the ion permeability of bilayer membranes. J Membrane Biol 2:41–58
    [Google Scholar]
  31. Houtsmüller U. M. T., van Deenen L. L. M. 1964; On the accumulation of amino acid derivatives of phosphatidylglycerol in bacteria. Biochim Biophys Acta 84:96–98
    [Google Scholar]
  32. Houtsmüller U. M. T., van Deenen L. L. M. 1965; On the amino acid esters of phosphatidyl glycerol from bacteria. Biochim Biophys Acta 106:564–576
    [Google Scholar]
  33. Joutti A., Brotherus J., Renkonen O., Laine A., Fischer W. 1976; The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung, and pig lung. Biochim Biophys Acta 450:206–209
    [Google Scholar]
  34. Kanemasa Y., Yoshioka T., Hayashi H. 1972; Alteration of the phospholipid composition of Staphylococcus aureus cultured in medium containing NaCl. Biochem Biophys Acta 280:444–450
    [Google Scholar]
  35. Kates M. 1986 Techniques of Lipidology, 2.396–399 New York: Elsevier;
    [Google Scholar]
  36. Koch H. U., Haas R., Fischer W. 1984; The role of LTA biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363
    [Google Scholar]
  37. Kosaric N., Carroll K. K. 1971; Phospholipids of Listeria monocytogenes. Biochim Biophys Acta 239:428–442
    [Google Scholar]
  38. Kritchevski D., Kirk M. C. 1952; Detection of steroids in paper chromatography. Arch Biochem Biophys 35:346
    [Google Scholar]
  39. Landgraf H. R. 1976; Fettsauremuster und positionsspezifische Verteilung der Fettsàuren in den polaren Lipiden von Strepto-coccen. PhD thesis University Erlangen-Nurnberg;
    [Google Scholar]
  40. Lang G. 1984; l-( – )Glycerol 3-phosphate. Methods of Enzymatic Analysis, 3. 6 Metabolites 1: Carbohydrates 525–531 Bergmeyer H. U., Bergmeyer J., Grassi M. Weinheim: VCH;
    [Google Scholar]
  41. LeCocq J., Ballou C. E. 1964; On the structure of cardiolipin. Biochemistry 3:976–980
    [Google Scholar]
  42. Lennarz W. J., Nesbitt J. A. III, Reiss J. 1966; The participation of SRNA in the enzymatic synthesis of O-l-lysyl phosphatidylglycerol in Staphylococcus aureus. Proc Nati Acad Sci USA 55:934–941
    [Google Scholar]
  43. Mastronicolis S. K., German J. B., & Smith G. M. 1996; Diversity of the polar lipids of the food-borne pathogen Listeria monocytogenes. Lipids 31:635–640
    [Google Scholar]
  44. Nakano M., Fischer W. 1977; The glycolipids of Lactobacillus casei DSM 20021. Hoppe-Seyler’s Z Physiol Chem 358:1439–1453
    [Google Scholar]
  45. Okabe A., Hirai Y., Hayashi H., Kanemasa Y. 1980; Alteration in phospholipid composition of Staphylococcus aureus during formation of autoplast. Biochim Biophys Acta 617:28–35
    [Google Scholar]
  46. O’Leary W. M., Wilkinson S. G. 1988; Gram-positive bacteria. Microbiol Lipids 1117–201 Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  47. Peter-Katalinié J., Fischer W. 1998; a-d-Glucopyranosyl, d-alanyl, and l-lysylcardiolipin from Gram-positive bacteria. Analysis by fast atom bombardment mass spectrometry. J Lipid Res 39:2286–2292
    [Google Scholar]
  48. Rouser G., Kritchevsky D., Yamamoto A. 1967; Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. Lipid Chromatographic Analysis 199–161 Marinetti G. New York: Marcel Dekker;
    [Google Scholar]
  49. Ruhland G. J., Fiedler F. 1987; Occurrence and biochemistry of LTAs in the genus Listeria. Syst Appi Microbiol 9:40–46
    [Google Scholar]
  50. Schleifer K. H., Kraus J., Dvorak C., Kilpper-Bàlz R., Collins M. D., Fischer W. 1985; Transfer of Staphylococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appi Microbiol 6:183–195
    [Google Scholar]
  51. Schnitger H., Papenberg K., Ganse E., Czok R., Biicher T., Adam H. 1959; Chromatographie phosphathaltiger Metabolite eines menschlichen Leberpunktats. Biochem Z 332:167–185
    [Google Scholar]
  52. Shaw N. 1968; The detection of lipids on thin-layer chromatograms with the periodate Schiff reagent. Biochim Biophys Acta 164:435–438
    [Google Scholar]
  53. Shaw N., Stead A. 1972; Bacterial glycophospholipids. FEBS Lett 21:249–253
    [Google Scholar]
  54. Short SA., White D. C. 1971; Metabolism of phosphatidylglycerol, lysylphosphatidylglycerol and cardiolipin of Staphylococcus aureus. J Bacteriol 108:219–226
    [Google Scholar]
  55. Short SA., White D. C. 1972; Biosynthesis of cardiolipin from phosphatidylglycerol in Staphylococcus aureus. J Bacteriol 109:820–826
    [Google Scholar]
  56. Stahl E. 1967 Diinnschicht-Chromatographie, 2. Berlin/Heidelberg/New York: Springer;
    [Google Scholar]
  57. Taron D. J., Childs W. C. III, Neuhaus F. C. 1983; Biosynthesis of d-alanyl-LTA : role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J Bacteriol 154:1110–1116
    [Google Scholar]
  58. Tocanne J. F., Verheij H. M., Op den Kamp J. A. F., van Deenen L. L. M. 1974; Chemical and physicochemical studies of lysylphosphatidylglycerol derivatives. Occurrence of A2′ → 3′ lysyl migration. Chem Phys Lipids 13:389–403
    [Google Scholar]
  59. Uchikawa K.-I., Sekikawa I., Azuma I. 1986; Structural studies on LTAs from four Listeria strains. J Bacteriol 168:115–122
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-653
Loading
/content/journal/ijsem/10.1099/00207713-49-2-653
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error