1887

Abstract

A Gram-positive, extremely halotolerant bacterium was isolated from the Great Salt Lake, Utah, USA. The strain, designated NN (= DSM 11805), was strictly aerobic, rod-shaped, motile by peritrichous flagella and spore-forming. Strain NN grew at salinities of 0–20% (w/v) NaCI. A distinctive feature of strain NN was its optimal growth in salt-free medium. The polar lipid pattern of strain NN consisted of phosphatidyl glycerol, diphosphatidyl glycerol and two phospholipids of unknown structure. The G+C content of its DNA was 38 mol%. The morphological, physiological and, particularly, the 16S rDNA sequence data, showed that strain NN was associated with ‘ group 1’. However, the organisms showing the greatest degree of sequence similarity to strain NN were members of the genus and the species and . On the basis of chemotaxonomic data, strain NN was shown to be chemically most similar to and , with the greatest degree of similarity being shown to the latter organism. This was consistent with the 16S rDNA sequence data. Members of the genus comprise a chemically distinct group and can easily be distinguished from all other organisms of ‘ 1’. On the basis of the 16S rDNA data, chemotaxonomy and the physiology of strain NN, it is proposed that this organism is a member of a new species, within a new genus, for which the name is proposed. It is also proposed that be transferred to this genus as comb. nov. and that be transferred to the genus gen. nov., as comb. nov. Finally, additional data is provided to support the transfer of to the genus , as Heyndrickx et al. (1998).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-821
1999-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-821.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-821&mimeType=html&fmt=ahah

References

  1. Ash C, Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA se-quences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantification of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  3. Claus D., Fahmy F., Rolf H. J., Tosunoglu N. 1983; Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506
    [Google Scholar]
  4. Deutch C. E. 1994; Characterization of a novel salt-tolerant Bacillus sp. from the nasal cavities of desert iguanas. FEMS Microbiol Lett 121:55–60
    [Google Scholar]
  5. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Dussault H. P. 1955; An improved technique for staining halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  7. Felsenstein J. 1993; phylip (phylogeny interference package), version 3.5c. University of Washington; Seattle, WA, USA:
    [Google Scholar]
  8. Finegold S. M., Baron E. J. 1986; Conventional and rapid microbiological methods for identification of bacteria and fungi. In Bailey and Scott’s Diagnostic Microbiology, 7.106–125 St Louis: C. V. Mosby;
    [Google Scholar]
  9. Forsyth M. P., Shindler D. B., Gochnauer M. B., Kushner D. J. 1971; Salt tolerance of intertidal marine bacteria. Can J Microbiol 17:825–828
    [Google Scholar]
  10. Garabito M. J., Arahal D. R., Mellado E., Mérquez M. C., Ventosa A. 1997; Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239
    [Google Scholar]
  12. Hebert A. M., Vreeland R. H. 1987; Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rec., comb. nov. Int J Syst Bacteriol 37:347–350
    [Google Scholar]
  13. Heyndrickx M., Lebbe L, Kersters D., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106
    [Google Scholar]
  14. Ingvorsen K., Jørgensen B. B. 1984; Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio . Arch Microbiol 139:61–66
    [Google Scholar]
  15. James S. R., Dobson S. J., Franzmann P. D., McMeekin T. A. 1990; Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 13:270–278
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Lawson P. A., Deutch C. E., Collins M. D. 1996; Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol81
    [Google Scholar]
  18. Ludwig W., Strunk O. 1996; arb: a software environment for sequence data. http://www.mikro.biologie.tu-muenchen.de/pub/ARB/documentation/arb.ps Technische Universität München; Munich, Germany:
    [Google Scholar]
  19. Merkel J. R. 1972; Influence of salts on the vibriostatic action of 2,4-diamino-6,7-diisopropyl pteridine. Arch Mikrobiol 81:379–382
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  21. Morikawa M., Izawa Y., Rashid N., Hoaki T., Imanaka T. 1994; Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Env Microbiol 60:4559–4566
    [Google Scholar]
  22. Paerl H. W., Shimp S. L. 1973; Preparation of filtered plankton and detritus for study with scanning electron microscopy. Limnol Oceanogr 18:802–805
    [Google Scholar]
  23. Proom H., Knight B. C. J. G. 1950; Bacillus pantothenticus (n. sp.). J Gen Microbiol 4:539–541
    [Google Scholar]
  24. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092
    [Google Scholar]
  25. Rodriguez-Valera F. 1986; The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiol Rev 39:17–22
    [Google Scholar]
  26. Rüger H. J., Richter G. 1979; Bacillus globisporus subsp. marinus subsp. nov. Int J Syst Bacteriol 29:196–203
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  29. Schumann P., Ihn W. 1996; Determination of peptidoglycan types by mass spectrometric methods for identification of Gram-positive bacteria. In Abstracts of the Fruejahrstagung der Vereinigung fuer Allgemeine und Angewandte Mikrobiologie (VAAM), abstr. PE060110 Bayreuth: Spektrum Academischer Verlag;
    [Google Scholar]
  30. Skerman V. B. D. 1967; Methods. In A Guide to the Identification of the Genera of Bacteria, 2.213–286 Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Sneath P. H. A. 1986; Endospore-forming Gram-positive rods and cocci. In Bergey’s Manual of Systematic Bacteriology 21104–1207 Holt J. G., Sneath P. H. A., Nicholas S. M., Sharpe M. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:A92–A96
    [Google Scholar]
  34. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130
    [Google Scholar]
  35. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  36. Ventosa A., Garcia M. T., Kamekura M., Onishi H., Ruiz-Berraquero F. 1989; Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Syst Appl Microbiol 12:162–166
    [Google Scholar]
  37. Ventosa A., Marquez M. C., Weiss N., Tindall B. J. 1992; Transfer of Marinococcus hispanicus to the genus Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 15:530–534
    [Google Scholar]
  38. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-821
Loading
/content/journal/ijsem/10.1099/00207713-49-2-821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error