1887

Abstract

The genus is composed of prosthecate bacteria often specialized for oligotrophic environments. The taxonomy of has relied primarily upon morphological criteria: A strain that visually appeared to be a member of the has generally been called one without challenge. A polyphasic approach, comprising 16S rDNA sequencing, profiling restriction fragments of 16S-23S rDNA interspacer regions, lipid analysis, immunological profiling and salt tolerance characterizations, was used to clarify the taxonomy of 76 strains of the genera and . The described species of the genus formed a paraphyletic group with , Caulobacter fusiformis, and comb, nov.) belonging to comb, nov.), subsp. aurantiacus ( comb, nov.), comb. nov.), subvibrioides ( comb. nov.), subsp. albus ( comb. nov.), comb. nov.) and belong to the genus . The halophilic species and are different from these two genera and form the genus gen. nov. with as the type specis was observed to cluster with species of the genus with and with as determined by these analyses and DNA-DNA hybridization. Biomarkers discerning these different genera were determined. The necessary recombinations have been proposed and a description of is presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-1053
1999-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-1053.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-1053&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter, Brevundimonas and Hyphomonas. Syst Appl Microbiol 20:522–539
    [Google Scholar]
  2. Anast N., Smit J. 1988; Isolation and characterization of marine caulobacters and assessment of their potential for generic experimentation. Appl Environ Microbiol 54:809–817
    [Google Scholar]
  3. Andreev L V., Akimov V. N., Nikitin D. I. 1986; Peculiarities of fatty acid composition of the genus Caulobacter. Folia Microbiol 31:144–153
    [Google Scholar]
  4. Batrakov S. G., Nikitin D. I., Pitryuk I. A. 1996; A novel glycolipid, 1,2-diacyl-3-a-D-glucuronopyranosyl-,w-glycerol taurine amide, from the budding seawater bacterium Hyphomonas jannaschiana. Biochim Biophys Acta 1302:167–176
    [Google Scholar]
  5. Batrakov S. G., Nikitin D. I., Sheichenko V. I., Ruzhitsky A. O. 1997; Unusual lipid composition of the gram-negative, freshwater, stalked bacterium Caulobacter bacteroides NP-105. Biochim Biophys Acta 1347:127–139
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. 1959; A rapid method for total lipid extraction and purification. Can JBiochem Physiol 37:911–917
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4105
    [Google Scholar]
  8. Brosius J., Dull T. J., Noller H. F. 1980; Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77:201–204
    [Google Scholar]
  9. Carter R. N., Schmidt J. M. 1976; Fatty acid composition of selected prosthecate bacteria. Arch Microbiol 110:91–94
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  11. Edwards U., Rogall, T„ Bloecker H., Emde M., Boettger E. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  12. Felsenstein J. 1989; phylip - phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Filip G., Fletcher G., Wulff J. L., Earhardt C. F. 1973; Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115:717–722
    [Google Scholar]
  14. Gutell R. R., Weiser B., Woese C. R., Noller H. F. 1985; Comparative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216
    [Google Scholar]
  15. Hancock R. E. W., Carey A. M. 1979; Outer membrane of P. aeruginosa: heat- and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910
    [Google Scholar]
  16. Hancock R. E. W., Siehnel R., Martin N. 1990; Outer membrane proteins of Pseudomonas. Mol Microbiol 4:1069–1075
    [Google Scholar]
  17. Harlow D., Lane D. 1988 Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Henrici A. T., Johnson D. E. 1935; Studies on fresh water bacteria. II. Stalked bacteria, a new order of schizomycetes. J Bacteriol 30:61–93
    [Google Scholar]
  19. Jannasch H. W., Jones G. E. 1960; Caulobacter in sea water. Limnol Oceanogr 5:432–433
    [Google Scholar]
  20. Judd R. C. 1988; Purification of outer membrane proteins from the gram-negative bacterium Neisseria gonorrhoeae. Anal Biochem 173:307–316
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–32 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. Karlson U., Dwyer D. F., Hooper S. W., Moore E. R. B., Timmis K. N., Eltis L. D. 1993; Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474
    [Google Scholar]
  23. Koval S. F., Hynes S. H. 1991; Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 173:2244–2249
    [Google Scholar]
  24. Kragelund L., Leopold K., Nybroe O. 1996; Outer membrane heterogeneity within Pseudomonasfluorescens and P. putida and use of an oprF antibody as a probe for rRNA homology group I pseudomonads. Appl Environ Microbiol 62:480–485
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  26. Lane D. J. 1991; 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  27. Lapteva N. A. 1987; Ecological characteristics of Caulobacter incidence in fresh-water basins. Mikrobiologiya 56:677–684
    [Google Scholar]
  28. Loeffler F. 1890; Weitere Untersuchungen iiber die Beizung und Farbung der Geisseln bei den Bakterien. Centralbl Bakteriol Parasitenkd 7:625–639
    [Google Scholar]
  29. MacRae J. D., Smit J. 1991; Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol 57:751–758
    [Google Scholar]
  30. Maizel J. V. 1969; Acrylamide gel electrophoresis of proteins and nucleic acids. In Functional Techniques in Virology pp. 334–362 Edited by Habel K., Salzman N. P. New York: Academic Press;
    [Google Scholar]
  31. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218
    [Google Scholar]
  32. Medlin L., Elwood H. J., Stickel S., Sogin M. L. 1988; The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499
    [Google Scholar]
  33. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  34. Minnikin D. E., Abdolrahimzadeh H., Baddiley J., Wilkinson S. G. 1973; Glycolipids and biological membranes. Replacement of phospholipids by glycolipids in Pseudomonas diminuta. Biochem Soc Trans 1:431–432
    [Google Scholar]
  35. Moore R. L., Schmidt J., Poindexter J., Staley J. T. 1978; Deoxyribonucleic acid homology among the caulobacters. Int J Syst Bacteriol 28:349–353
    [Google Scholar]
  36. Nikitin D. L., Vishnewetskaya O. Y., Chumakov K. M., Zlatkin I. V. 1990; Evolutionary relationship of some stalked and budding bacteria (genera Caulobacter, ‘ Hyphobacter’, Hyphomonas and Hyphomicrobium) as studied by the new integral taxonomic method. Arch Microbiol 153:123–128
    [Google Scholar]
  37. Orita M., Suzuki Y., Sekiya T. B., Hayashi K. 1989; Rapid and sensitive detection of point mutation and DNA polymorphisms using polymerase chain reaction. Genomics 5:874–879
    [Google Scholar]
  38. Osterhout G. J., Shull V. H., Dick J. D. 1991; Identification of clinical isolates of Gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol 29:1822–1830
    [Google Scholar]
  39. Poindexter J. S. 1964; Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295
    [Google Scholar]
  40. Poindexter J. S. 1981a; Oligotrophy. Fast and famine existence. In Microbial Ecology vol. 5 pp. 63–89 Edited by Alexander M. New York: Plenum;
    [Google Scholar]
  41. Poindexter J. S. 1981b; The Caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179
    [Google Scholar]
  42. Poindexter J. S. 1989; Genus Caulobacter Henrici and Johnson 1935, 83AL. In Bergey’s Manual of Systematic Bacteriology vol. 3 pp. 1924–1939 Edited by Staley T. J., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  43. Poindexter J. S., Lewis R. F. 1966; Recommendations for revision of the taxonomic treatment of stalked bacteria. Int J Syst Bacteriol 16:377–382
    [Google Scholar]
  44. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  45. Skerman V. B. D., McGowan V., Sneath P. H. A. 1989 Approved Lists of Bacterial Names Washington, DC: American Society for Microbiology;
    [Google Scholar]
  46. Sly L. I., Cahill M. M., Majeed K., Jones G. 1997; Reassessment of the phylogenetic position of Caulobacter subvibrioides. Int J Syst Bacteriol 47:211–213
    [Google Scholar]
  47. Stackebrandt E., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. 1988; A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filo- microbium, Caulobacter and ‘ Dichotomicrobium ’ to the alpha- subdivision of purple non-sulfur bacteria. Arch Microbiol 159:547–556
    [Google Scholar]
  48. Stahl D. A., Key R., Flesher B., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174:2193–2198
    [Google Scholar]
  49. Staley J. T. 1968; Prosthecomicrobium and Acalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942
    [Google Scholar]
  50. Staley J. T., Konopka A. E., Dalmasso J. P. 1987; Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiol Ecol 45:1–6
    [Google Scholar]
  51. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  52. Tesar M., Marquardt O. 1990; Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174:364–374
    [Google Scholar]
  53. Tesar M., Hoch C., Moore E. R. B., Timmis K. 1996; Westprinting: development of a rapid immunochemical identification for species within the genus Pseudomonas sensu stricto. Syst Appl Microbiol 19:577–588
    [Google Scholar]
  54. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130
    [Google Scholar]
  55. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  56. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76:4350–4354
    [Google Scholar]
  57. Ullstrom C. A., Siehnel R., Woodroff W., Steinbach S., Hancock R. E. W. 1991; Conservation of the gene for outer membrane protein OprF in the family Pseudomonadaceae: sequence of the Pseudomonas syringae oprF gene. J Bacteriol 173:768–775
    [Google Scholar]
  58. Urakami T., Oyanagi H., Araki H., Suzuku K.-I., Komagata K. 1990; Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int J Syst Bacteriol 40:434–442
    [Google Scholar]
  59. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540
    [Google Scholar]
  60. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  61. Walker S. G., Smith S. H., Smit J. 1992; Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. J Bacteriol 174:1783–1792
    [Google Scholar]
  62. Wilkinson S. G. 1969; Lipids of Pseudomonas diminuta. Biochim Biophys Acta 187:492–500
    [Google Scholar]
  63. Wilkinson S. G., Bell M. E. 1971; The phosphoglucolipid from Pseudomonas diminuta. Biochim Biophys Acta 248:293–299
    [Google Scholar]
  64. Willems A., Busse J., Goor M. 8 other authors 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleroni (formerly Pseudomonas palleroni), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘ Pseudomonas carboxydoflava ’), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333
    [Google Scholar]
  65. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequence. FEMS Microbiol Lett 107:115–120
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-1053
Loading
/content/journal/ijsem/10.1099/00207713-49-3-1053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error