1887

Abstract

[ DSM 1805 (= ATTC 14820, DSM 50409, ICBP NCIB 9420) has been reinvestigated to clarify its taxonomic position. 16 sequence comparisons demonstrated that this species clusters phylogenetically with species of the genus Investigation fatty acid patterns, polar lipid profiles, polyamine patterns and quinc systems supported this delineation. Substrate utilization profiles and biochemical characteristics displayed no distinct overall similarity to an validly described species of the genus Therefore, the reclassification of [ as comb. nov. is proposed, based upon the estimated phylogenetic positon derived from 16S rRNA gene sequence data, chemotaxonomic data and previously published genomic DNA G+C content data.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-1103
1999-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-1103.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-1103&mimeType=html&fmt=ahah

References

  1. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation by polyamine analysis of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41:223–228
    [Google Scholar]
  2. Balkwill D. L., Drake G. R., Reeves R. H. 7 other authors 1997; Taxonomic study of aromatic-degrading bacteria from deep terrestrial subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708
    [Google Scholar]
  5. Czygan F.-C., Heumann W. 1967; Die Zusammensetzung und Biogenese der Carotinoide in Pseudomonas echinoides und einigen Mutanten. Arch Microbiol 57:123–134
    [Google Scholar]
  6. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509
    [Google Scholar]
  7. De Vos P., Van Landschoot A., Segers P. 8 other authors 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49
    [Google Scholar]
  8. Hamana K., Matsuzaki S. 1991; Polyamine distribution patterns serve as a phenotypic marker in the chemotaxonomy of the Proteobacteria. Can J Microbiol 39:304–310
    [Google Scholar]
  9. Heumann W. 1960; Versuche zur Rekombination sternbildender Bakterien. Naturwissenschaften 47:330–331
    [Google Scholar]
  10. Heumann W. 1962a; Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentbl 81:341–354
    [Google Scholar]
  11. Heumann W. 1962b; Genetische Untersuchung sternbildender Bakterien. Z. Vererbungsl 93:441–452
    [Google Scholar]
  12. Heumann W. 1972; Die Konjugation bei sternbildenden Bodenbakterien. Zentbl Bakteriol Hyg I Abt Orig A 220:335–342
    [Google Scholar]
  13. Heumann W., Marx R. 1964; Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides. Arch Mikrobiol 47:325–337
    [Google Scholar]
  14. Jenkins C. L., Andrews A. G., McQuade T. J., Starr M. P. 1979; The pigment of Pseudomonas paucimobilis is carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kampfer P., Altwegg M. 1992; Numerical classification and identification of Aeromonas genospecies. J Appl Bacteriol 72:341–351
    [Google Scholar]
  17. Kampfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005
    [Google Scholar]
  18. Kampfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbial Ecol 21:227–251
    [Google Scholar]
  19. KSmpfer P., Bark K., Busse H.-J., Auling G., Dott W. 1992; Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate: AMP phosphotransferase (PPAT) activity. Syst Appl Microbiol 15:309–419
    [Google Scholar]
  20. KSmpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J. 1997; Classification of ‘’Pseudomonas azotocolligans’ Anderson 1955, 132, in the Genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583
    [Google Scholar]
  21. Kroppenstedt R. M. 1982; Anwendung chromatographischer HP-Verfahren (HPTLC und HPLC) in der Bakterien- taxonomie. GIT Lab Med 5:266–275
    [Google Scholar]
  22. Marx R., Heumann W. 1962; Uber GeiBelfeinstrukturen und Fimbrien bei zwei Pseudomonas-Siammen. Arch Mikrobiol 43:245–254
    [Google Scholar]
  23. Mayer F., Schmitt R., Kail S. 1972; Die Zellverbindung bei sternbildenden Bakterien. Zentbl Bakteriol Hyg I Abt Orig A 220:335–342
    [Google Scholar]
  24. Moore E. R. B., Wittich R.-M., Fortnagel P., Timmis K. N. 1993; 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo-β-dioxin-degrading isolate within the new genus Sphingomonas. Lett Appl Microbiol 17:115–118
    [Google Scholar]
  25. Nohynek L., Suhonen E., Nurmiaho-Lassila E.-L., Hantula J., Salkinoja-Salonen M. 1996; Description of four penta- chlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538
    [Google Scholar]
  26. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and gel electrophoretic protein patterns. J Gen Microbiol 128:2945–2954
    [Google Scholar]
  27. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3- hydroxy fatty acids. J Gen Appl Microbiol 29:17–40
    [Google Scholar]
  28. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb, nov., and Brevundimonas vesicularis comb, nov., respectively. Int J Syst Bacteriol 44:499–510
    [Google Scholar]
  29. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420
    [Google Scholar]
  30. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis. nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38:321–325
    [Google Scholar]
  31. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: amended description of the genus Sphingomonas and new description of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16:227–238
    [Google Scholar]
  32. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int J Syst Bacteriol 44:308–314
    [Google Scholar]
  33. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334
    [Google Scholar]
  34. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202
    [Google Scholar]
  35. Van Bruggen A. C., Jochensen K. N., Steinberger E. M., Segers P., Gillis M. 1993; Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int J Syst Bacteriol 43:1–7
    [Google Scholar]
  36. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  37. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-1103
Loading
/content/journal/ijsem/10.1099/00207713-49-3-1103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error