1887

Abstract

A strictly anaerobic, spore-forming bacterium (3.0-5.0 × 0.4-0.8 μm), designated strain SR3 (=type strain), which stained Gram-positive and possessed a Grampositive type cell wall was isolated from a methanogenic pilot-scale digester fed with olive mill wastewater (Sfax, Tunisia). It utilized a number of carbohydrates (glucose, fructose, sorbose, galactose, -inositol, sucrose, lactose, cellobiose), organic compounds (lactate, betaine, sarcosine, dimethylglycine, methanethiol, dimethylsulfide), alcohol (methanol) and all methoxylated aromatic compounds only in the presence of yeast extract (0.1%). The end products from carbohydrate fermentation were H, CO, formate, acetate and ethanol, that from lactate was methanol, those from methoxylated aromatics were acetate and butyrate, and that from betaine, sarcosine, dimethylglycine, methanethiol and dimethylsulfide was only acetate. Strain SR3 was non-motile, had a G+C content of 44 mol% and grew optimally at 37 °C and pH 7.4 on a glucose-containing medium. Phylogenetically, the closest relatives of strain SR3 were the non-methoxylated aromatic-degrading and (mean similarity of 98%). On the basis of the phenotypic, genotypic and phylogenetic characteristics of the isolate, it is proposed to designate strain SR3 as sp. nov. The type strain is SR3 (=DSM 12182).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-1201
1999-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-1201.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-1201&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Andreesen J. R., Gottschalk G., Schlegel H. G. 1970; Clostridium formicoaceticum nov. spec., description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174
    [Google Scholar]
  3. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gond- wanense sp. nov., a new thermophilic anaerobic bacterium isolated from non volcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269
    [Google Scholar]
  4. Balch W. E., Schoberth S., Tanner R. S., Wolfe R. S. 1977; Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361
    [Google Scholar]
  5. Benson D., Lipman D. J., Olstell J. 1993; GenBank. Nucleic Acids Res 21:2963–2965
    [Google Scholar]
  6. Breznak J. A., Switzer J. M., Seitz H.-J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288
    [Google Scholar]
  7. Capasso R., Evidente A., Schivo, L, Orru, G„ Marcialis M. A., Cristinzio G. 1995; Antibacterial polyphenols from olive mill wastewaters. J Appl Bacteriol 79:393–398
    [Google Scholar]
  8. Cato E. P., George W. L., Finegold S. M. 1986; Genus Clostridium. In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1141–1200 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams Wilkins;
    [Google Scholar]
  9. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  10. Daniel S. L., Wu Z., Drake H. L. 1988; Growth of thermophilic acetogenic bacterium on methoxylated aromatic acids. FEMS Microbiol Lett 52:25–28
    [Google Scholar]
  11. Dehning I., Stieb M., Schink B. 1989; Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate and succinate. Arch Microbiol 151:421–426
    [Google Scholar]
  12. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermo- anaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332
    [Google Scholar]
  13. Fardeau M.-L., Ollivier B., Patel B. K., C„ Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019
    [Google Scholar]
  14. Felsenstein J. 1993; phylip (Phylogenetic Inference Package) version 3.51c. Distributed by the author. Department of Genetics University of Washington; Seattle, WA, USA:
    [Google Scholar]
  15. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. 1942; A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J Bacteriol 43:701–715
    [Google Scholar]
  16. Genthner B. R. S., Davis C. L., Bryant M. P. 1981; Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2-CO2-utilizing species. Appl Environ Microbiol 42:12–19
    [Google Scholar]
  17. Grech-Mora I., Fardeau M.-L., Patel B. K. C., Ollivier B., Rimbault A., Prensier G., Garcia J.-L., Garnier-Sillam E. 1997; Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. Int J Syst Bacteriol 46:512–518
    [Google Scholar]
  18. Heider J., Fuchs G. 1997; Microbial anaerobic aromatic metabolism. Anaerobe 3:1–22
    [Google Scholar]
  19. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 136:194–198
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Krumholz L. R., Bryant M. P. 1985; Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacteriol 35:454–456
    [Google Scholar]
  22. Kuhner C. H., Frank C., Gribhammer A., Schmittroth G., A, Gobner A., Drake H. 1997; Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358
    [Google Scholar]
  23. Liesack W„, Back F., Kreft J. U., Stackebrandt E. 1994; Holofaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90
    [Google Scholar]
  24. Liu S., Suflita J. M. 1993; H2-CO2-dependent o-demethylation activity in subsurface sediment by an isolated bacterium. Appl Environ Microbiol 59:1325–1331
    [Google Scholar]
  25. Lux M. F., Keith E., Hsu T., Drake H. L. 1990; Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol Lett 67:73–78
    [Google Scholar]
  26. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anerobiosis. Am J Clin Nutr 25:1318–1323
    [Google Scholar]
  27. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  29. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
    [Google Scholar]
  30. Palop M. L., Valles S., Pinaga F., Flors A. 1989; Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71
    [Google Scholar]
  31. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113:81–86
    [Google Scholar]
  32. Rogers G. M., Baecker A. A. W. 1991; Clostridium xylano- lyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula Wood Ships. Int J Syst Bacteriol 41:140–143
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  34. Van Gylswyk N. O., Van Der Toorn J. J. T. K. 1987; Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover. Int J Syst Bacteriol 37:102–105
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate- reducing bacteria that decompose fatty acids. Isolation of new sulfate reducing bacteria enriched with acetate from saline environments. Description of Desulfobacterpostgatei gen. nov., sp. nov. Arch Microbiol 129:395–400
    [Google Scholar]
  36. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260
    [Google Scholar]
  37. Winker S., Woese C. R. 1991; A definition of the domains ArchaeaBacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165
    [Google Scholar]
  38. Wolin M. J., Miller T. L. 1993; Bacterial strains from human feces that reduce CO2 to acetic acid. Appl Environ Microbiol 59:3551–3556
    [Google Scholar]
  39. Zeikus J. G., Lynd L. G., Thompson T. E., Krzycki J. A., Weimer P. J., Hegge P. W. 1980; Isolation and characterization of a new, methylotrophic acidogenic anaerobe, the Marburg strain. Curr Microbiol 3:381–386
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-1201
Loading
/content/journal/ijsem/10.1099/00207713-49-3-1201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error