1887

Abstract

A cellulolytic anaerobic bacterium, strain I77R1B, was isolated from a biomat sample of an lcelandic, slightly alkaline, hot spring (78 °C). Strain I77R1B was rod-shaped, non-spore-forming, non-motile and stained Gram-negative at all stages of growth. It grew at 45-82 °C, with an optimum growth temperature around 78 °C. At 70 °C, growth occurred at pH 5·8-8·0, with an optimum near pH 7·0. At the optimum temperature and pH, with 2 g cellobiose I as substrate, strain I77R1B had a generation time of 2 h. During growth on Avicel, strain I77R1B produced acetate, hydrogen and carbon dioxide as major fermentation products together with small amounts of lactic acid and ethanol. The strain fermented many substrates, including cellulose, xylan, starch and pectin, but did not grow with casein peptone, pyruvate, -ribose or yeast extract and did not reduce thiosulfate to HS. The G+C ratio of the cellular DNA was 35 mol%. Comparative 16S rDNA analysis placed strain I77R1B among species of . The closest relative was . Hybridization of total DNA showed 42% hybridization to and 22% hybridization to . A new species, sp. nov. (I77R1B) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-3-991
1999-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/3/ijs-49-3-991.html?itemId=/content/journal/ijsem/10.1099/00207713-49-3-991&mimeType=html&fmt=ahah

References

  1. Angelidaki I., Petersen S. P., Ahring B. K. 1990; Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33:469–472
    [Google Scholar]
  2. Cook G. M., Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst Appl Microbiol 14:240–244
    [Google Scholar]
  3. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfide in cultures of sulfate- reducing bacteria. J Microbiol Methods 4:33–36
    [Google Scholar]
  4. Gerhardt P. 1981; Manual of Methods for General Bacteriology. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hörber C., Christiansen N., Arvin E., Ahring B. K. 1998; Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge. Appl Environ Microbiol 64:1860–1863
    [Google Scholar]
  6. Huang C.-Y., Patel B. K., Mah R. A., Baresi L. 1998; Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol 48:91–97
    [Google Scholar]
  7. Hudson J. A., Morgan H. W., Daniel R. M. 1990; A survey of cellulolytic anaerobic thermophiles from hot springs. Syst Appl Microbiol 13:72–76
    [Google Scholar]
  8. Hungate R. E. 1969; A roll-tube method for cultivation of strict anaerobes. Methods Microbiol 3:117–132
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Lee Y., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes : description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermohydrosulfuricum El00-69 as Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermo-anaerobacter thermohydrosulfuricus comb nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51
    [Google Scholar]
  11. Mladenovska Z., Mathrani I. M., Ahring B. K. 1995; Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163:223–230
    [Google Scholar]
  12. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113:125–128
    [Google Scholar]
  13. Rainey F. A., Janssen P. H., Daniel R. M., Morgan H. W., Stackebrandt E. 1993a; A biphasic approach to the determination of the phenotypic and genotypic diversity of some anaerobic, cellulolytic, thermophilic, rod-shaped bacteria. Antonie Leeuwenhoek 64:341–355
    [Google Scholar]
  14. Rainey F. A., Ward N. L., Morgan H. W., Toastler R., Stackebrandt E. 1993b; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779
    [Google Scholar]
  15. Rainey F. A., Donnison A. M., Janssen P. H., Saul D., Rodrigo A., Bergquist P. L., Daniel R. M., Stackebrandt E., Morgan H. W. 1994; Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an obligately anaerobic, extremely thermo-philic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–1158
    [Google Scholar]
  18. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154
    [Google Scholar]
  19. Sissons C. H., Sharrock K. R., Daniel R. M., Morgan H. W. 1987; Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites. Appl Environ Microbiol 53:832–838
    [Google Scholar]
  20. Sonne-Hansen J., Ahring B. K. 1997; Anaerobic microbiology of a slightly alkaline Icelandic hot-spring. FEMS Microbiol Ecol 23:31–38
    [Google Scholar]
  21. Sonne-Hansen J., Mathrani I. M., Ahring B. K. 1993; Xylanolytic anaerobic thermophiles from Icelandic hot-springs. Appl Microbiol Biotechnol 38:537–541
    [Google Scholar]
  22. Sörensen A. H., Winther-Nielsen M., Ahring B. K. 1991; Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB reactors. Appl Microbiol Biotechnol 34:823–827
    [Google Scholar]
  23. Strunk O., Ludwig W. 1995; ARB - a software environment for sequence data. Department of Microbiology, Technical University of Munich; Munich Germany: [email protected].
    [Google Scholar]
  24. Svetlichnii V. A., Svetlichnaya T. P. 1988; Dictyoglomus turgidus sp. nov.>, a new extreme thermophilic eubacterium isolated from hot springs in the Uzon volcano crater. Mikro- biologiya 57:435–441
    [Google Scholar]
  25. Svetlichnii V. A., Svetlichnaya T. P., Chernykn N. A., Zavarzin G. A. 1990; Anaerocellum thermophilum gen. nov., sp. nov., an extreme thermophilic cellulolytic eubacterium isolated from hot springs in the valley of Geysers. Mikrobiologiya 59:871–879
    [Google Scholar]
  26. Taya M., Hinoki H., Susuki Y., Yagi T., Yap M. G. S., Kobayashi T. 1985; New thermophilic anaerobes that de-compose crystalline cellulose. J Ferment Technol 63:383–387
    [Google Scholar]
  27. Wiegel J. 1992; The anaerobic thermophilic bacteria. In Thermophilic Bacteria pp 105–184 Edited by Krist-jansson J. K. London: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-3-991
Loading
/content/journal/ijsem/10.1099/00207713-49-3-991
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error