1887

Abstract

The relationship of mixotrophic and autotrophic species to morphologically similar chemoorganotrophic bacteria (e.g. species, Eikelboom type 021N bacteria) has been a matter of debate for some years. These bacteria have alternatively been grouped together on the basis of shared morphological features or separated on the basis of their nutrition. Many of these bacteria are difficult to maintain in axenic culture and, until recently, few isolates were available to allow comprehensive phenotypic and genotypic characterization. Several isolates of spp. and Eikelboom type 021N strains were characterized by comparative 16S rRNA sequence analysis. This revealed that the spp. and Eikelboom type 021N isolates formed a monophyletic group. Furthermore, isolates of Eikelboom type 021N bacteria isolated independently from different continents were phylogenetically closely related. The 16S rRNA sequence-based phylogeny was congruent with the morphological similarities between and Eikelboom type 021N. However, one isolate examined in this study (Ben47) shared many morphological features with the spp. and Eikelboom type 021N isolates, but was not closely related to them phylogenetically. Consequently, morphology alone cannot be used to assign bacteria to the 021N group. Comparative 16S rRNA sequence analysis supports monophyly of the 021N group, and phenotypic differences between the spp. and Eikelboom type 021N bacteria are currently poorly defined. For example, both groups include heterotrophic organisms that deposit intracellular elemental sulfur. It is therefore proposed that the Eikelboom type 021N bacteria should be accommodated within the genus as a new species, sp. nov., and three further new species are described: sp. nov., sp. nov. and sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1817
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1817.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1817&mimeType=html&fmt=ahah

References

  1. Blackall L. L. 1994; Molecular identification of activated sludge foaming bacteria. Water Sci Technol 29:35–42
    [Google Scholar]
  2. Brigmon R. L., Martin H. W., Morris T. L, Bitton G., Zam S. G. 1994a; Biogeochemical ecology of Thiothrix spp. in underwater limestone caves. Geomicrobiol J 12:141–159
    [Google Scholar]
  3. Brigmon R. L., Bitton G., Zam S. G., Martin H. W., O’Brien B. 1994b; Identification, enrichment, and isolation of Thiothrix spp. from environmental samples. Curr Microbiol 28:243–246
    [Google Scholar]
  4. Brigmon R. L., Bitton G., Zam S. G., O’Brien B. 1995; Development and application of a monoclonal antibody against Thiothrix spp. Appl Environ Microbiol 61:13–20
    [Google Scholar]
  5. Brock T. D. 1974 Family IV. Leucotrichaceae Buchanan 1957. Bergey’s Manual of Determinative Bacteriology, 8th.118–119 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Brock T. D. 1989 Genus Leucothrix Oersted 1844. Bergey’s Manual of Systematic Bacteriology 32121–2124 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Brock T. D. 1992 The genus Leucothrix. The Prokaryotes, 2nd.3247–3255 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Fischer;
    [Google Scholar]
  8. Cyrus Z., Sladkä A. 1970; Several interesting organisms present in activated sludge. Hydrobiologia 35:383–396
    [Google Scholar]
  9. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 1991; ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008
    [Google Scholar]
  10. Dul’tseva N. M., Dubinina G. A. 1994; Thiothrix arctophila sp. nov. - a new species of filamentous colorless sulfur bacteria. Microbiology (English translation of Mikrobiologiya) 63:147–153
    [Google Scholar]
  11. Dul’tseva N. M., Dubinina G. A., Lysenko A. M. 1996; Isolation of marine filamentous sulfur bacteria and description of the new species Leucothrix thiophila sp. nov. Microbiology (English translation of Mikrobiologiya) 65:79–87
    [Google Scholar]
  12. Edwards LI., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853
    [Google Scholar]
  13. Eikelboom D. H. 1975; Filamentous organisms observed in activated sludge. Water Res 9:365–388
    [Google Scholar]
  14. Farquhar G. J., Boyle W. C. 1971; Occurrence of filamentous microorganisms in activated sludge. J Water Pollut Control Fed 43:779–798
    [Google Scholar]
  15. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  16. Felsenstein J. 1989; phylip - phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  17. Ford H. W., Tucker D. P. H. 1975; Blockage of drip irrigation filters and emitters by iron-sulfur-bacterial products. Horticult Sci 10:62–64
    [Google Scholar]
  18. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  19. Harold R., Stanier R. Y. 1955; The genera Leucothrix and Thiothrix. Bacteriol Rev 19:49–64
    [Google Scholar]
  20. Head I. M., Gray N. D., Clarke K. J., Pickup R. W., Jones J. G. 1996; The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiology 142:2341–2354
    [Google Scholar]
  21. Howarth R., Head I. M., Unz R. F. 1998; Phylogenetic assessment of five filamentous bacteria isolated from bulking activated sludges. Water Sci Technol 37:303–306
    [Google Scholar]
  22. Hudson R., Williams C., Seviour R. J., Soddell J. A. 1994; Variation in phenotypic characters of type 02 IN from activated sludge systems. Water Sci Technol 29:143–147
    [Google Scholar]
  23. Jones J. G., Jay F. M. S., Hilton J. 1982; A note on the growth of Thiothrix in road drainage ditches. J Appl Bacteriol 53:427–430
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  25. Kanagawa T., Kamagata Y., Yamada K., Kohno T. 1998 Phylogenetic analysis of type 02 IN strains isolated from bulking sludges. Microbial Community and Functions in Wastewater Treatment Processes151–160 Tokyo:
    [Google Scholar]
  26. Kohno T. 1988; Morphology, physiology and nutrition of a sulphur-oxidizing filamentous organism isolated from activated sludge. Water Sci Technol 20:241–247
    [Google Scholar]
  27. Lane D. J., Harrison A. P. Jr, Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278
    [Google Scholar]
  28. Larkin J. M. 1989 Genus II. Thiothrix Winogradsky 1888. Bergey’s Manual of Systematic Bacteriology 32098–2101 Edited by Staley J. P., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Larkin J. M., Shinabarger D. L. 1983; Characterization of Thiothrix nivea. Int J Syst Bacteriol 33:841–846
    [Google Scholar]
  30. Larkin J. M., Strohl W. R. 1983; Beggiatoa, Thiothrix, and Thioploca. Annu Rev Microbiol 37:341–367
    [Google Scholar]
  31. Ludwig W., Rosselld-Mora R., Aznar R.14 other authors 1995; Comparative sequence analysis of 23S rRNA from Proteobacteria. Syst Appl Microbiol 18:164–188
    [Google Scholar]
  32. McGIannan M. F., Makemson J. C. 1990; HCO3. fixation by naturally occurring tufts and pure cultures of Thiothrix nivea. Appl Environ Microbiol 56:730–738
    [Google Scholar]
  33. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  34. Nielsen P. H., Andreasen K., Wagner M., Blackall L. L., Lemmer H., Seviour R. J. 1998; Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Sci Technol 37:423–440
    [Google Scholar]
  35. Odintsova E. V., Dubinina G. A. 1990; A new colorless filamentous sulfur bacterium Thiothrix ramosa nov. sp. Microbiology (English translation of Mikrobiologiya) 59:437–445
    [Google Scholar]
  36. Odintsova E. V., Wood A. P., Kelly D. P. 1993; Chemolitho-autotrophic growth of Thiothrix ramosa. Arch Microbiol 160:152–157
    [Google Scholar]
  37. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  38. Pernelle J.-J., Cotteux E., Duchene P. 1997 Effectiveness of oligonucleotide probes targeted against Thiothrix nivea and type 02IN 16S rRNA for in situ identification and population monitoring of activated sludges. Proceedings of the 2nd International Meeting on Microorganisms in Activated Sludge and Biofilm Processes263–271 Edited by Jenkins D., Hermanowicz S. W. Berkeley, CA: IAWQ;
    [Google Scholar]
  39. Polz M. F., Odintsova E. V., Cavanaugh C. M. 1996; Phylogenetic relationships of the filamentous sulfur bacterium Thiothrix ramosa based on 16S rRNA sequence analysis. Int J Syst Bacteriol 46:94–97
    [Google Scholar]
  40. Pringsheim E. G. 1957; Observations on Leucothrix mucor and Leucothrix cohaerens nov. sp. Bacteriol Rev 21:69–76
    [Google Scholar]
  41. Reichenbach H., Dworkin M. 1981 Introduction to the gliding bacteria. The Prokaryotes315–327 Edited by Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G. New York: Fischer;
    [Google Scholar]
  42. Richard M. G., Shimizu G. P., Jenkins D. 1985; The growth physiology of the filamentous organism type 02IN and its significance to activated sludge bulking. J Water Pollut Control Fed 57:1152–1162
    [Google Scholar]
  43. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  44. Shuttleworth K. L., Unz R. F. 1991; Influence of metals and metal speciation on the growth of filamentous bacteria. Water Res 25:1177–1186
    [Google Scholar]
  45. Shuttleworth K. L., Unz R. F. 1993; Sorption of heavy metals to the filamentous bacterium Thiothrix strain Al. Appl Environ Microbiol 59:1274–1282
    [Google Scholar]
  46. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420
    [Google Scholar]
  47. Smith S. W., Overbeek R., Woese C. R., Gilbert W., Gillevet P. M. 1994; The genetic data environment an expandable GUI for multiple sequence analysis. Comput Appl Biosci 10:671–675
    [Google Scholar]
  48. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  49. Tandoi V., Caravaglio N., Di Dio Balsamo D., Majone M., Tomei M. C. 1994; Isolation and physiological characterization of Thiothrix sp. Water Sci Technol 29:261–269
    [Google Scholar]
  50. Teske A., Ramsing N. B., Kiiver J., Fossing H. 1996; Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst Appl Microbiol 18:517–526
    [Google Scholar]
  51. Unz R. F., Williams T. M. 1989 Substrate utilization by filamentous sulfur bacteria of activated sludge. Recent Advances in Microbial Ecology: Proceedings of the 5th International Symposium on Microbial Ecology412–416 Edited by Hattori T., Ishida Y., Maruyama Y., Morita R. Y., Uchida A. Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  52. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  53. Wagner M., Amann R., Kampfer P., Assmus B., Hartmann A., Hutzler P., Springer N., Schleifer K.-H. 1994; Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417
    [Google Scholar]
  54. Williams T. M., Unz R. F. 1985a; Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 02IN strains. Appl Environ Microbiol 49:887–898
    [Google Scholar]
  55. Williams T. M., Unz R. F. 1985b; Isolation and characterization of filamentous bacteria present in bulking activated sludge. Appl Microbiol Biotechnol 22:273–282
    [Google Scholar]
  56. Williams T. M., Unz R. F. 1989; The nutrition of Thiothrix, type 02IN, Beggiatoa and Leucothrix strains. Water Res 23:15–22
    [Google Scholar]
  57. Williams T. M., Unz R. F., Doman J. T. 1987; Ultrastructure of Thiothrix spp. and ‘type 021N’ bacteria. Appl Environ Microbiol 53:1560–1570
    [Google Scholar]
  58. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  59. Ziegler M., Lange M., Dott W. 1990; Isolation and morphological and cytological characterization of filamentous bacteria from activated sludge. Water Res 24:1437–1451
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1817
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error