1887

Abstract

The taxonomic position of two actinomycetes isolated from soil was established using a polyphasic approach. The organisms, designated 213E and 213F, were found to have chemical and morphological properties consistent with their assignment to the genus . Nearly complete sequences of the 16S rDNA genes of the two strains were determined following the isolation and direct sequencing of the amplified genes. The tested strains were found to have identical 16S rDNA sequences and formed a phylogenetic line within the evolutionary radiation occupied by the genus that was most closely related to DSM 43197. However, DNA-DNA relatedness data showed that strain 213E and DSM 43197 belonged to distinct genomic species. Strains 213E and 213F also shared an identical phenotypic profile which distinguished them from representatives of validly described species. The combined genotypic and phenotypic data show that strains 213E and 213F merit recognition as a new species of . The name proposed for the new species is , for which the type strain is 213E (= NCIMB 40816).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1845
1999-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1845.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1845&mimeType=html&fmt=ahah

References

  1. Bendinger B., Rainey F. A., Kroppenstedt R. M., Moormann M., Klatte S. 1995; Gordona hydrophobica sp. nov., isolated from biofilters for waste gas treatment. Int J Syst Bacteriol 45:544–548
    [Google Scholar]
  2. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochm 81:461–466
    [Google Scholar]
  3. Chun J. 1995 Computer-assisted classification and identification of actinomycetes PhD thesis University of Newcastle;
    [Google Scholar]
  4. Chun J., Kang S.-O., Hah Y. C., Goodfellow M. 1996; Phylogeny of mycolic acid containing actinomycetes. J Indust Microbiol 17:205–213
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  6. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (Phylogenetic Inference Package), version 3.5c. Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  11. Gilbert S. C., Morton J., Buchanan S., Oldfield C., McRoberts A. 1998; Isolation of a unique benzothiophene-desulphurizing bacterium, Gordonia sp. strain 213ET (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553
    [Google Scholar]
  12. Goodfellow M., Mordarski M., Szyba K., Pulverer G. 1978 Relationship among rhodococci based on deoxyribonucleic acid reassociation. Genetics of Actinomycetales231–234 Edited by Freerksen E., Târnok I., Thumin J. H. Stuttgart: Gustav Fischer Verlag;
    [Google Scholar]
  13. Goodfellow M., Alderson G., Chun J. 1998; Rhodococcal systematics: problems and developments. Antonie Leeuwenhoek 74:1–12
    [Google Scholar]
  14. Gordon R. E. 1967 The taxonomy of soil bacteria. The Ecology of Soil Bacteria293–321 Edited by Gray T. R. G., Parkinson D. Liverpool: Liverpool University Press;
    [Google Scholar]
  15. Hefferan M. 1904; A comparative and experimental study of bacilli producing red pigment. Zentbl Bakteriol Parasitenkd Abt 1173:74–96
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  17. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  18. Jones J. 1949; Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism 321–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  20. Kämpfer P., Anderson M. A., Rainey F. A., Kroppenstedt R. M., Salkinoja-Salonen M. 1999; Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children’s day centre. Int J Syst Bacteriol 49:681–687
    [Google Scholar]
  21. Kayser K. J., Bielaga-Jones B. A., Jackowski K., Odusan O., Kilbane J. J. II 1993; Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129
    [Google Scholar]
  22. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68
    [Google Scholar]
  23. Klatte S., Rainey F. A., Kroppenstedt R. M. 1994; Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus G or dona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int J Syst Bacteriol 44:769–773
    [Google Scholar]
  24. Klatte S., Kroppenstedt R. M., Schumann P., Altendorf K., Rainey F. A. 1996; Gordona hirsuta sp. nov. Int J Syst Bacteriol 46:876–880
    [Google Scholar]
  25. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32
    [Google Scholar]
  26. Lechevalier H. A., Lechevalier M. P. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 30:435–444
    [Google Scholar]
  27. Lechevalier M. P., Lechevalier H. A. 1974; Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288
    [Google Scholar]
  28. McFarland B. L, Boron D. J., Deever W., Meyer J. A., Johnson A. R., Atlas R. M. 1998; Biocatalytic sulfur removal from fuels: applicability for producing low-sulphur gasoline. Crit Rev Microbiol 24:99–147
    [Google Scholar]
  29. Maidak B. L, Olsen G. J., Larsen N., Overbeek R., McGaughey M. J., Woese G. R. 1997; The Ribosomal Database Project (RDP). Nucleic Acids Res 25:109–111
    [Google Scholar]
  30. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980; Thin-layer chromatography of methanolysates of mycolic acid containing bacteria. J Chromatogr 188:221–233
    [Google Scholar]
  31. Minnikin D. E., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241
    [Google Scholar]
  32. Mordarski M., Goodfellow M., Szyba K., Pulverer G., Tkacz A. 1977; Classification of the ‘rhodochrous’ complex and allied taxa based upon deoxyribonucleic acid reassociation. Int J Syst Bacteriol 27:31–38
    [Google Scholar]
  33. Mordarski M., Goodfellow M., Szyba K., Tkacz A., Pulverer G., Schaal K. P. 1980; Deoxyribonucleic acid reassociation in the classification of the genus Rhodococcus. Int J Syst Bacteriol 30:521–527
    [Google Scholar]
  34. Ochi K. 1992; Electrophoretic heterogeneity of ribosomal protein AT-L30 among actinomycete genera. Int J Syst Bacteriol 42:144–150
    [Google Scholar]
  35. Oldfield G., Pogrebinsky O., Simmonds J., Olson E., Kulpa G. F. 1997; Elucidation of the metabolic pathway for dibenzothiophene desulphurisation by Rhodococcus sp. strain IGTS8. Microbiology 143:2961–2973
    [Google Scholar]
  36. Rhee S. K., Chang J. H., Chang Y. K., Chang H. O. 1998; Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2332
    [Google Scholar]
  37. Riegel P., Kamne-Fotso M. V., De Briel D., Prévost G., Jehl F., Piémont Y., Monteil H. 1994; Rhodococcus chubuensis Tsukamura 1982 is a later subjective synonym of Gordona sputi (Tsukamura 1978) Stackebrandt 1989 comb. nov. Int J Syst Bacteriol 44:764–768
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  39. Society for American Bacteriologists 1957 Manual of Microbiological Methods New York: McGraw-Hill;
    [Google Scholar]
  40. Stackebrandt E., Smida J., Collins M. D. 1988; Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J Gen Appl Microbiol 34:341–348
    [Google Scholar]
  41. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classic nov. Int J Syst Bacteriol 47:479–491
    [Google Scholar]
  42. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  43. Steingrube V. A., Wilson R. W., Brown B. A., Jost K. C., Blacklock Z., Gibson J. L., Wallace R. J. 1997; Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J Clin Microbiol 35:817–822
    [Google Scholar]
  44. Stevenson J. L. 1967; Utilization of aromatic hydrocarbons by Arthrobacter spp. Can J Microbiol 13:205–211
    [Google Scholar]
  45. Swofford D. L., Olsen G. J. 1990 Phylogenetic reconstruction. Molecular Systematics411–501 Edited by Hillis D., Moritz C. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  46. Takeuchi M., Hatano K. 1998; Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907–912
    [Google Scholar]
  47. Tamaoka J. 1994 Determination of DNA base composition. Chemical Methods in Prokaryotic Systematics463–470 Edited by Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  48. Toboli A. S. 1995 Taxonomy of acid-fast bacteria PhD thesis University of Newcastle;
    [Google Scholar]
  49. Tsukamura M. 1971; Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J Gen Microbiol 68:15–26
    [Google Scholar]
  50. Tsukamura M. 1978; Numerical classification of Rhodococcus (formerly Gordona) organisms recently isolated from sputa of patients: description of Rhodococcus sputi Tsukamura sp. nov. Int J Syst Bacteriol 28:169–181
    [Google Scholar]
  51. Tsukamura M. 1982; Numerical analysis of the taxonomy of nocardiae and rhodococci. Division of Nocardia asteroides sensu stricto into two species and description of Nocardia paratuberculosis sp. nov. Tsukamura, (formerly the Kyoto-I group of Tsukamura), Nocardia nova sp. nov. Tsukamura, Rhodococcus aichiensis sp. nov. Tsukamura, Rhodococcus chubuensis sp. nov. Tsukamura, and Rhodococcus obuensis sp. nov. Tsukamura. Microbiol Immunol 26:1101–1119
    [Google Scholar]
  52. Warhurst M. A., Fewson C. A. 1994; Biotransformations catalysed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73
    [Google Scholar]
  53. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  54. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
  55. Zakrzewska-Czerwinska J., Mordarski M., Goodfellow M. 1988; DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 134:2807–2813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1845
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error