1887

Abstract

The vernacular name 'fluorescent Pseudomonas group 97-514' was coined for a group of 43 strains isolated from two French natural mineral waters. All these strains were gram-negative, rod-shaped and motile by means of a single polar flagellum. They produced fluorescent pigment (pyoverdin) on King B medium, catalase and cytochrome oxidase. They were capable of respiratory but not fermentative metabolism. They were not able to accumulate poly-beta-hydroxybutyrate and possessed an arginine dihydrolase system. DNA-DNA relatedness studies (S1 nuclease method) showed that the 43 strains of 'fluorescent Pseudomonas group 97-514' formed a genetically homogeneous group (DNA-DNA relatedness ranged from 70 to 100%). A total of 76 strains representing well-known or partially characterized species of the genus Pseudomonas sensu stricto had 7-56% DNA hybridization with strain CFML 97-514T. The highest DNA binding values were found with Pseudomonas veronii CIP 104663T (52%), Pseudomonas rhodesiae CIP 104664T (56%), Pseudomonas marginalis ATCC 10844T (56%), Pseudomonas gessardii CIP 105469T (53%) and Pseudomonas cedrella CIP 105541T (52%). Their unrelatedness was confirmed by deltaTm values greater than 7 degrees C. On the basis of the results of phenotypic and DNA-DNA hybridization studies, a novel Pseudomonas species, Pseudomonas grimontii sp. nov., is proposed for the 43 strains of 'fluorescent Pseudomonas group 97-514'. The type strain is strain CFML 97-514T (= CIP 106645T = ATCC BAA-140T). The G+C content of the DNA of the type strain was 58 mol%. A comparison of the complete 16S rRNA gene sequence of the type strain CFML 97-514T and the sequence of other strains of the genus Pseudomonas revealed that the novel species fell within the 'Pseudomonas fluorescens intrageneric cluster'. Members of P. grimontii grew at 4 degrees C but not at 41 degrees C. They were able to use D-xylose, alpha-L-rhamnose, alpha-aminobutyrate, meso-erythritol and itaconate as sole sources of carbon and energy and formed levan from sucrose. Strains do not possess lecithinase or Tween esterase activities. The clinical significance of P. grimontii is unknown.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-52-5-1497
2002-09-01
2024-03-28
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-52-5-1497
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error