1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain TB-6, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at 9° N. The cells were Gram-staining-negative and rod-shaped with one or more polar flagella. Cell size was approximately 1–1.5 µm in length and 0.5 µm in width. Strain TB-6 grew between 45 and 70 °C (optimum 55–60 °C), 0 and 35 g NaCl l (optimum 20–30 g l) and pH 4.5 and 7.5 (optimum pH 5.5–6.0). Generation time under optimal conditions was 2 h. Growth of strain TB-6 occurred with H as the energy source, CO as the carbon source and nitrate or sulfur as electron acceptors, with formation of ammonium or hydrogen sulfide, respectively. Acetate, (+)--glucose, Casamino acids, sucrose and yeast extract were not used as carbon and energy sources. Inhibition of growth occurred in the presence of lactate, peptone and tryptone under a H/CO (80 : 20; 200 kPa) gas phase. Thiosulfate, sulfite, arsenate, selenate and oxygen were not used as electron acceptors. The G+C content of the genomic DNA was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene of strain TB-6 showed that this organism branched separately from the three most closely related genera, , and , within the family . Strain TB-6 contained several unique fatty acids in comparison with other members of the family . Based on experimental evidence, it is proposed that the organism represents a novel species and genus within the family gen. nov., sp. nov. The type strain is TB-6 ( = DSM 27783 = JCM 19563).

Funding
This study was supported by the:
  • National Science Foundation (Award OCE 11-24141, MCB 08-43678 and OCE 11-36451)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000070
2015-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1144.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000070&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V., Cambon-Bonavita M. A. ( 2002 ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. . Int J Syst Evol Microbiol 52, 13171323. [View Article] [PubMed]
    [Google Scholar]
  2. Alain K., Callac N., Guégan M., Lesongeur F., Crassous P., Cambon-Bonavita M. A., Querellou J., Prieur D. ( 2009 ). Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. . Int J Syst Evol Microbiol 59, 13101315. [View Article] [PubMed]
    [Google Scholar]
  3. Garrity G. M., Bell J. A., Lilburn T. ( 2005 ). Class V. Epsilonproteobacteria class. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 2, pp. 11451194: Edited by Brenner D. J., Krieg N. R., Staley J. T. . New York:: Springer;. [View Article]
    [Google Scholar]
  4. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K. ( 2001 ). Polyphasic taxonomy. . In Bergey’s Manual of Systematic Bacteriology, pp. 4348. Edited by Boone D. R., Castenholz R. W., Garrity G. M. . New York:: Springer;. [View Article]
    [Google Scholar]
  5. Gouy M., Guindon S., Gascuel O. ( 2010 ). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27, 221224. [View Article] [PubMed]
    [Google Scholar]
  6. Hanson T. E., Campbell B. J., Kalis K. M., Campbell M. A., Klotz M. G. ( 2013 ). Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. . Front Microbiol 4, 180. [View Article] [PubMed]
    [Google Scholar]
  7. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;. [View Article]
    [Google Scholar]
  8. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. ( 1998 ). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. . Int J Syst Bacteriol 48, 13631372. [View Article] [PubMed]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. ( 1989 ). Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  10. Miroshnichenko M. L., Kostrikina N. A., L’Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. ( 2002 ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 52, 12991304. [View Article] [PubMed]
    [Google Scholar]
  11. Miroshnichenko M. L., L’Haridon S., Schumann P., Spring S., Bonch-Osmolovskaya E. A., Jeanthon C., Stackebrandt E. ( 2004 ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 54, 4145. [View Article] [PubMed]
    [Google Scholar]
  12. Nakagawa S., Takai K., Inagaki F., Hirayama H., Nunoura T., Horikoshi K., Sako Y. ( 2005 ). Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. . Environ Microbiol 7, 16191632. [View Article] [PubMed]
    [Google Scholar]
  13. Pérez-Rodríguez I., Ricci J., Voordeckers J. W., Starovoytov V., Vetriani C. ( 2010 ). Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 60, 11821186. [View Article] [PubMed]
    [Google Scholar]
  14. Smith J. L., Campbell B. J., Hanson T. E., Zhang C. L., Cary S. C. ( 2008 ). Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. . Int J Syst Evol Microbiol 58, 15981602. [View Article] [PubMed]
    [Google Scholar]
  15. Stetter K. O., König H., Stackebrandt E. ( 1983 ). Pyrodictium gen. nov. a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. . Syst Appl Microbiol 4, 535551. [View Article] [PubMed]
    [Google Scholar]
  16. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. ( 2005 ). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. . Int J Syst Evol Microbiol 55, 183189. [View Article] [PubMed]
    [Google Scholar]
  17. Tindall B. J. ( 1990 a). A comparative-study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13, 128130. [View Article]
    [Google Scholar]
  18. Tindall B. J. ( 1990 b). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  19. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V. ( 2004 ). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. . Int J Syst Evol Microbiol 54, 175181. [View Article] [PubMed]
    [Google Scholar]
  20. Voordeckers J. W., Starovoytov V., Vetriani C. ( 2005 ). Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. . Int J Syst Evol Microbiol 55, 773779. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000070
Loading
/content/journal/ijsem/10.1099/ijs.0.000070
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error