- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 65, Issue 8
- Article

f Halorubrum gandharaense sp. nov., an alkaliphilic haloarchaeon from commercial rock salt
- Authors: Yusuke Kondo1 , Hiroaki Minegishi1,2 , Akinobu Echigo1 , Yasuhiro Shimane2 , Masahiro Kamekura3 , Takashi Itoh4 , Moriya Ohkuma4 , Naoko Takahashi-Ando1 , Yasumasa Fukushima1 , Yasuhiko Yoshida1 , Ron Usami1
-
- VIEW AFFILIATIONS
-
1 1Department of Biological Applied Chemistry, Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan 2 2Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan 3 3Halophiles Research Institute, 677-1 Shimizu, Noda-shi, Chiba 278-0043, Japan 4 4RIKEN BioResource Center, 3-1-1 Koyadai, Tukuba-shi, Ibaraki 305-0074, Japan
- Correspondence Yusuke Kondo k[email protected]
- First Published Online: 01 August 2015, International Journal of Systematic and Evolutionary Microbiology 65: 2345-2350, doi: 10.1099/ijs.0.000261
- Subject: NEW TAXA - Archaea
- Received:
- Accepted:
- Cover date:




Halorubrum gandharaense sp. nov., an alkaliphilic haloarchaeon from commercial rock salt, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/65/8/2345_ijs000261-1.gif
-
A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1T, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1T were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg2+ was not required for growth. The major polar lipids of the isolate were C20C20 and C20C25 archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1T was most closely related to those of the species of the genus Halorubrum, Halorubrum luteum CECT 7303T (95.9 % similarity), Halorubrum alkaliphilum JCM 12358T (95.3 %), Halorubrum kocurii JCM 14978T (95.3 %) and Halorubrum lipolyticum JCM 13559T (95.3 %). The rpoB′ gene sequence of strain MK13-1T had < 90 % sequence similarity to those of other members of the genus Halorubrum. Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1T may represent a novel species of the genus Halorubrum, for which the name Halorubrum gandharaense sp. nov. is proposed, with the type strain MK13-1T ( = JCM 17823T = CECT 7963T).
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and RNA polymerase B′ gene sequences of strain MK13-1T are AB563178 and AB820320, respectively.
-
Three supplementary figures are available with the online Supplementary Material.
© 2015 IUMS | Published by the Microbiology Society
-
Cline S.W., Schalkwyk L.C., Doolittle W.F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171: 4987––4991 [PubMed].
-
Dussault H.P.. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70: 484––485 [PubMed].
-
Fan H., Xue Y., Ma Y., Ventosa A., Grant W.D.. ( 2004;). Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 54: 1213––1216 [CrossRef][PubMed].
-
Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783––791 [CrossRef].
-
Feng J., Zhou P., Zhou Y.G., Liu S.J., Warren-Rhodes K.. ( 2005;). Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55: 149––152 [CrossRef][PubMed].
-
Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24: 710––715 [CrossRef][PubMed].
-
Hu L., Pan H., Xue Y., Ventosa A., Cowan D.A., Jones B.E., Grant W.D., Ma Y.. ( 2008;). Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58: 1705––1708 [CrossRef][PubMed].
-
Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135––161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton, FL: CRC Press;.
-
Kamekura M.. ( 1998;). Diversity of extremely halophilic bacteria. Extremophiles 2: 289––295 [CrossRef][PubMed].
-
Kamekura M., Dyall-Smith M.L., Upasani V., Ventosa A., Kates M.. ( 1997;). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47: 853––857 [CrossRef][PubMed].
-
Kates M.. ( 1993;). Biology of halophilic bacteria. Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia 49: 1027––1036 [CrossRef][PubMed].
-
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947––2948 [CrossRef][PubMed].
-
McGenity T.J., Grant W.D.. ( 2001;). Genus VII. Halorubrum. . In Bergey's Manual of Systematic Bacteriology, pp. 320––324. Edited by Boone D. R., Castenholz R. W., Garrity G. M.., 2nd edn.vol. 1 New York: Springer;.
-
Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60: 2398––2408 [CrossRef][PubMed].
-
Miyazaki S., Sugawara H., Gojobori T., Tateno Y.. ( 2003;). DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31: 13––16 [CrossRef][PubMed].
-
Mwatha W.E., Grant W.D.. ( 1993;). Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43: 401––404 [CrossRef].
-
Nagaoka S., Minegishi H., Echigo A., Usami R.. ( 2010;). Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 60: 2828––2831 [CrossRef][PubMed].
-
Nagaoka S., Minegishi H., Echigo A., Shimane Y., Kamekura M., Usami R.. ( 2011;). Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 61: 1149––1152 [CrossRef][PubMed].
-
Ochsenreiter T., Pfeifer F., Schleper C.. ( 2002;). Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6: 267––274 [CrossRef][PubMed].
-
Oren A.. ( 2002a;). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28: 56––63 [CrossRef][PubMed].
-
Oren A.. ( 2002b;). Molecular ecology of extremely halophilic Archaea Bacteria. FEMS Microbiol Ecol 39: 1––7 [CrossRef][PubMed].
-
Oren A., Ventosa A., Grant W.D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47: 233––238 [CrossRef].
-
Page R.D.M.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357––358.
-
Papke R.T., Koenig J.E., Rodríguez-Valera F., Doolittle W.F.. ( 2004;). Frequent recombination in a saltern population of Halorubrum. Science 306: 1928––1929 [PubMed].
-
Pearson W.R., Lipman D.J.. ( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85: 2444––2448 [CrossRef][PubMed].
-
Pesenti P.T., Sikaroodi M., Gillevet P.M., Sánchez-Porro C., Ventosa A., Litchfield C.D.. ( 2008;). Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol 58: 2710––2715 [CrossRef][PubMed].
-
Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406––425 [PubMed].
-
Shimane Y., Hatada Y., Minegishi H., Echigo A., Nagaoka S., Miyazaki M., Ohta Y., Maruyama T., Usami R., other authors. ( 2011;). Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61: 2266––2270 [CrossRef][PubMed].
-
Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607––654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
-
Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456––463 [CrossRef][PubMed].
-
Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125––128 [CrossRef].
-
Tomlinson G.A., Hochstein L.I.. ( 1976;). Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 22: 587––591 [CrossRef][PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijs.0.000261dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijs.0.000261dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....