- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 65, Issue 9
- Article

f Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil
- Authors: Allyn H. Maeda1 , Marie Kunihiro1 , Yasuhiro Ozeki1 , Yuichi Nogi2 , Robert A. Kanaly1
-
- VIEW AFFILIATIONS
-
1 1 Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama 236-0027, Japan 2 2 Institute of Biogeosciences (Biogeos), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
- Correspondence Robert A. Kanaly [email protected]
- First Published Online: 01 September 2015, International Journal of Systematic and Evolutionary Microbiology 65: 2919-2924, doi: 10.1099/ijs.0.000356
- Subject: NEW TAXA - Proteobacteria
- Received:
- Accepted:
- Cover date:




Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/65/9/2919_ijs000356-1.gif
-
A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22T, was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22T has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22T was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKPT (99.8 %) and less closely related to Sphingobium quisquiliarum P25T (97.5 %). Results of DNA–DNA hybridization (DDH) revealed relatedness values between strain KK22T and strain TKPT and between strain KK22T and strain P25T of 21 ± 4 % (reciprocal hybridization, 27 ± 2 %) and 15 ± 2 % (reciprocal hybridization, 17 ± 1 %), respectively. Chemotaxonomic analyses of strain KK22T showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22T was motile, and its biochemical and physiological characteristics, strain KK22T could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22T represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22T ( = DSM 29313T = JCM 30309T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain KK22T is HQ830159.
-
Two supplementary figures and one supplementary table are available with the online Supplementary Material.
-
Abbreviations: DDH DNA–DNA hybridization HMW high molecular weight PAH polycyclic aromatic hydrocarbon
© 2015 IUMS | Published by the Microbiology Society
-
Arden Jones M.P. , McCarthy A.J. , Cross T. . ( 1979;). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . J Gen Microbiol 115: 343––354 [CrossRef] [PubMed].
-
Atlas R.M. . ( 1993;). Handbook of Microbiological Media., Boca Raton, FL: CRC Press;.
-
Bala K. , Sharma P. , Lal R. . ( 2010;). Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60: 429––433 [CrossRef] [PubMed].
-
Busse H.-J. , Kämpfer P. , Denner E.B.M. . ( 1999;). Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23: 242––251 [CrossRef] [PubMed].
-
Cerniglia C.E. . ( 1992;). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351––368 [CrossRef].
-
Dadhwal M. , Jit S. , Kumari H. , Lal R. . ( 2009;). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59: 3140––3144 [CrossRef] [PubMed].
-
Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224––229 [CrossRef].
-
Gordon R.E. , Mihm J.M. . ( 1962;). Identification of Norcadia caviae (erikson) nov. comb.. Annals NY Acad Sci 98: 628––636.[CrossRef]
-
Kanaly R.A. , Bartha R. . ( 1999;). Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon additions to soil. Environ Toxicol Chem 18: 2186––2190.[CrossRef]
-
Kanaly R.A. , Harayama S. . ( 2000;). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059––2067 [CrossRef] [PubMed].
-
Kanaly R.A. , Harayama S. . ( 2010;). Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3: 136––164 [CrossRef] [PubMed].
-
Kanaly R. , Bartha R. , Fogel S. , Findlay M. . ( 1997;). Biodegradation of [(sup14)C]benzo[a]pyrene added in crude oil to uncontaminated soil. Appl Environ Microbiol 63: 4511––4515 [PubMed].
-
Kanaly R.A. , Bartha R. , Watanabe K. , Harayama S. . ( 2000;). Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66: 4205––4211 [CrossRef] [PubMed].
-
Kunihiro M. , Ozeki Y. , Nogi Y. , Hamamura N. , Kanaly R.A. . ( 2013;). Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 79: 4410––4420 [CrossRef] [PubMed].
-
Maeda A.H. , Nishi S. , Ozeki Y. , Ohta Y. , Hatada Y. , Kanaly R.A. . ( 2013;). Draft genome sequence of Sphingobium sp. strain KK22, a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Genome Announc 1: e00911––e00913 [CrossRef] [PubMed].
-
Maeda A.H. , Nishi S. , Hatada Y. , Ozeki Y. , Kanaly R.A. . ( 2014;). Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Microb Biotechnol 7: 114––129 [CrossRef] [PubMed].
-
Minnikin D.E. , Collins M.D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47: 87––95 [CrossRef].
-
Nishijima M. , Araki-Sakai M. , Sano H. . ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28: 113––122 [CrossRef].
-
Prakash O. , Lal R. . ( 2006;). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56: 2147––2152 [CrossRef] [PubMed].
-
Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406––425 [PubMed].
-
Smibert R.M. , Krieg N.R. . ( 1994;). Pehnotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607––655. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
-
Stackebrandt E. . ( 2011;). Molecular taxonomic parameters. Microbiol Aust 32: 59––61.
-
Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152––155.
-
Stackebrandt E. , Goebel B.M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44: 846––849.
-
Stolz A. . ( 2009;). Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81: 793––811 [CrossRef] [PubMed].
-
Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405––1417 [PubMed].[CrossRef]
-
Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731––2739 [CrossRef] [PubMed].
-
Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673––4680 [CrossRef] [PubMed].
-
Tindall B.J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249––266 [CrossRef] [PubMed].
-
Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37: 463––464.
-
Young C.C. , Ho M.-J. , Arun A.B. , Chen W.-M. , Lai W.-A. , Shen F.-T. , Rekha P.D. , Yassin A.F. . ( 2007;). Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57: 2613––2617 [CrossRef] [PubMed].
-
Young C.C. , Arun A.B. , Kämpfer P. , Busse H.-J. , Lai W.-A. , Chen W.-M. , Shen F.-T. , Rekha P.D. . ( 2008;). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58: 1801––1806 [CrossRef] [PubMed].
-
Zipper C. , Nickel K. , Angst W. , Kohler H.-P.E. . ( 1996;). Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62: 4318––4322 [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijs.0.000356dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijs.0.000356dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....