1887

Abstract

Two Gram-negative, aerobic, motile, rod-shaped bacteria, designated strains 908033 and 908087, were isolated from a seawater sample collected from the East China Sea. Chemotaxonomic characteristics of the two isolates included the presence of iso-C, iso-C and iso-C 9 as the major cellular fatty acids and Q-8 as the predominant ubiquinone. The genomic DNA G+C contents of strains 908033 and 908087 were 45.5 and 45.2 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the new isolates were related to members of the genus , showing levels of similarity of 95.8–96.6 % with the type strains of recognized species of the genus. The results of DNA–DNA hybridization experiments among these two isolates and CICC 10319, in combination with chemotaxonomic and phenotypic data, demonstrated that the new isolates represent two novel species of the genus , for which the names sp. nov. (type strain 908033=CGMCC 1.7284=JCM 15533) and sp. nov. (type strain 908087=CGMCC 1.7285=JCM 15534) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005702-0
2009-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1321.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005702-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  2. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  4. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  5. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  6. Hu, Z. Y. & Li, Y.(2007).Pseudidiomarina sediminum sp. nov., a marine bacterium isolated from coastal sediments of Luoyuan Bay in China. Int J Syst Evol Microbiol 57, 2572–2577.[CrossRef] [Google Scholar]
  7. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  8. Ivanova, E. P., Romanenko, L. A., Chun, J., Matte, M. H., Matte, G. R., Mikhailov, V. V., Svetashev, V. I., Huq, A., Maugel, T. & Colwell, R. R.(2000).Idiomarina gen. nov., comprising novel indigenous deep-sea bacteria from the Pacific Ocean, including descriptions of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50, 901–907.[CrossRef] [Google Scholar]
  9. Ivanova, E. P., Flavier, S. & Christen, R.(2004). Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54, 1773–1788.[CrossRef] [Google Scholar]
  10. Jean, W. D., Shieh, W. Y. & Chiu, H.-H.(2006).Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae. Int J Syst Evol Microbiol 56, 899–905.[CrossRef] [Google Scholar]
  11. Kämpfer, P., Steiof, M. & Dott, W.(1991). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef] [Google Scholar]
  12. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  14. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  15. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  16. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  17. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  18. Mesbah, M. & Whitman, W. B.(1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef] [Google Scholar]
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  22. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1982). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968. [Google Scholar]
  23. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  24. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M.(2007).Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef] [Google Scholar]
  25. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M.(2008).Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef] [Google Scholar]
  26. Yoon, J.-H., Jung, S.-Y., Jung, Y.-T. & Oh, T.-K.(2007).Idiomarina salinarum sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 57, 2503–2506.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005702-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005702-0
Loading

Data & Media loading...

Supplements

Transmission electron micrographs of strains 908033 ( sp. nov.) and 908087 ( sp. nov.). [PDF](296 KB)

PDF

Maximum-parsimony (a) and maximum-likehood (b) trees based on 16S rRNA gene sequences. [PDF](25 KB)

PDF

Cellular fatty acid contents of strains 908033 ( sp. nov.) and 908087 ( sp. nov.) and related species [PDF](46 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error