1887

Abstract

A strictly anaerobic, Gram-positive, short-rod/coccobacillus-shaped bacterial strain, designated 7-10-1-b, was isolated from the colon of a patient suffering from acute Crohn's disease. The isolate formed small, pale-white, semi-translucent colonies on solid cultivation media. The strain was catalase-positive and metabolized only a small number of carbon sources. Whole-cell fatty acids consisted predominantly of saturated fatty acids (89 %), of which 15 : 0 anteiso was the major component. The polar lipids phosphatidylglycerol and diphosphatidylglycerol as well as four glycolipids were identified. 16S rRNA gene sequence analysis revealed that the isolate represents a distinct lineage within the family and has 94.6 % identity to the type strain of [] , the phylogenetically closest bacterial species. On the basis of the analyses performed, the new genus and species gen. nov., sp. nov. is described, with strain 7-10-1-b (=DSM 19378 =CCUG 55131) as the type and only strain of . Also, based on the chemotaxonomic data obtained for all type strains of the neighbouring genus , we propose that Lau 2006 be transferred to a new genus as gen. nov., comb. nov.; the type strain of is HKU10 (=DSM 16106 =CCUG 49250).

Keyword(s): DMA, dimethylacetal
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005900-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1405.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005900-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J.(2000).Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 50, 633–638.[CrossRef] [Google Scholar]
  3. Carlone, G. M. & Anet, F. A. L.(1983). Detection of menaquinone-6 and a novel methyl-substituted menaquinone-6 in Campylobacter jejuni and Campylobacter fetus subsp. fetus. J Gen Microbiol 129, 3385–3393. [Google Scholar]
  4. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  5. Chan, R. C. & Mercer, J.(2008). First Australian description of Eggerthella lenta bacteraemia identified by 16S rRNA gene sequencing. Pathology 40, 409–410.[CrossRef] [Google Scholar]
  6. Chun, O. K., Chung, S. J. & Song, W. O.(2007). Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137, 1244–1252. [Google Scholar]
  7. Collins, M. D. & Wallbanks, S.(1992). Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett 95, 235–240.[CrossRef] [Google Scholar]
  8. Collins, M. D. & Widdel, F.(1986). Respiratory quinone of sulfate-reducing and sulfur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8, 8–18.[CrossRef] [Google Scholar]
  9. Collins, M. D., Costas, M. & Owen, R. J.(1984). Isoprenoid quinone composition of representatives of the genus Campylobacter. Arch Microbiol 137, 168–170.[CrossRef] [Google Scholar]
  10. Collins, M. D., Fernandez, F. & Howarth, O. W.(1985). Isolation and characterization of a novel vitamin-K from Eubacterium lentum. Biochem Biophys Res Commun 133, 322–328.[CrossRef] [Google Scholar]
  11. Cushnie, T. P. & Lamb, A. J.(2005). Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26, 343–356.[CrossRef] [Google Scholar]
  12. Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A. & Wade, W. G.(2001). Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51, 1797–1804.[CrossRef] [Google Scholar]
  13. Doetsch, R. N.(1981). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. H. Phillips. Washington, DC: American Society for Microbiology.
  14. Dombek, P. E., Johnson, L. K., Zimmerley, S. T. & Sadowsky, M. J.(2000). Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66, 2572–2577.[CrossRef] [Google Scholar]
  15. Eggerth, A. H.(1935). The gram-positive non-spore-bearing anaerobic bacilli of human faeces. J Bacteriol 30, 277–299. [Google Scholar]
  16. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  17. Felsenstein, J.(1989).phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166. [Google Scholar]
  18. Fernandez, F. & Collins, M. D.(1987). Vitamin K composition of anaerobic gut bacteria. FEMS Microbiol Lett 41, 175–180.[CrossRef] [Google Scholar]
  19. Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrateva, T. F., Moore, E. R. B., Abraham, W.-R., Lünsdorf, H., Timmis, K. N., Yakimov, M. M. & Golyshin, P. N.(2000).Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50, 997–1006.[CrossRef] [Google Scholar]
  20. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  21. Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O.(2005). PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33, W557–W559.[CrossRef] [Google Scholar]
  22. Harmsen, H. J. M., Wildeboer-Veloo, A. C. M., Grijpstra, J., Knol, J., Degener, J. E. & Welling, G. W.(2000). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66, 4523–4527.[CrossRef] [Google Scholar]
  23. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  24. Itoh, U., Sato, M., Tsuchiya, H. & Namikawa, I.(1995). Cellular fatty acids and aldehydes of oral Eubacterium. FEMS Microbiol Lett 126, 69–74.[CrossRef] [Google Scholar]
  25. Jin, J. S., Zhao, Y. F., Nakamura, N., Akao, T., Kakiuchi, N., Min, B. S. & Hattori, M.(2007). Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol Pharm Bull 30, 2113–2119.[CrossRef] [Google Scholar]
  26. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  27. Kageyama, A. & Benno, Y.(2000). Emendation of genus Collinsella and proposal of Collinsella stercoris sp. nov. and Collinsella intestinalis sp. nov. Int J Syst Evol Microbiol 50, 1767–1774. [Google Scholar]
  28. Kageyama, A., Benno, Y. & Nakase, T.(1999a). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol 49, 557–565.[CrossRef] [Google Scholar]
  29. Kageyama, A., Benno, Y. & Nakase, T.(1999b). Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 1725–1732.[CrossRef] [Google Scholar]
  30. Kageyama, A., Benno, Y. & Nakase, T.(1999c). Phylogenic and phenotypic evidence for the transfer of Eubacterium fossor to the genus Atopobium as Atopobium fossor comb. nov. Microbiol Immunol 43, 389–395.[CrossRef] [Google Scholar]
  31. Kanz, C., Aldebert, P., Althorpe, N., Baker, W., Baldwin, A., Bates, K., Browne, P., van den Broek, A., Castro, M. & other authors(2005). The EMBL nucleotide sequence database. Nucleic Acids Res 33, D29–D33. [Google Scholar]
  32. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Braker, G. & Hirsch, P.(1998).Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48, 1363–1372.[CrossRef] [Google Scholar]
  33. Landais, C., Doudier, B., Imbert, G., Fenollar, F. & Brouqui, P.(2007). Application of rrs gene sequencing to elucidate the clinical significance of Eggerthella lenta infection. J Clin Microbiol 45, 1063–1065.[CrossRef] [Google Scholar]
  34. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  35. Lau, S. K., Woo, P. C., Fung, A. M., Chan, K. M., Woo, G. K. & Yuen, K. Y.(2004a). Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol 53, 1247–1253.[CrossRef] [Google Scholar]
  36. Lau, S. K., Woo, P. C., Woo, G. K., Fung, A. M., Wong, M. K., Chan, K. M., Tam, D. M. & Yuen, K. Y.(2004b).Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteraemia. Diagn Microbiol Infect Dis 49, 255–263.[CrossRef] [Google Scholar]
  37. Lau, S. K., Woo, P. C., Woo, G. K., Fung, A. M., Wong, M. K., Chan, K. M., Tam, D. M. & Yuen, K. Y.(2006).Eggerthella hongkongensis sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published. Validation List no. 111. Int J Syst Evol Microbiol 56, 2025–2027.[CrossRef] [Google Scholar]
  38. Lawson, P. A., Greetham, H. L., Gibson, G. R., Giffard, C., Falsen, E. & Collins, M. D.(2005).Slackia faecicanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 55, 1243–1246.[CrossRef] [Google Scholar]
  39. Maruo, T., Sakamoto, M., Ito, C., Toda, T. & Benno, Y.(2008).Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58, 1221–1227.[CrossRef] [Google Scholar]
  40. McCarthy, A. J. & Cross, T.(1984). A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130, 5–25. [Google Scholar]
  41. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  42. Minamida, K., Ota, K., Nishimukai, M., Tanaka, M., Abe, A., Sone, T., Tomita, F., Hara, H. & Asano, K.(2008).Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 58, 1238–1240.[CrossRef] [Google Scholar]
  43. Moore, W. E. C., Cato, E. P. & Holdeman, L. V.(1971).Eubacterium lentum (Eggerth) Prevot 1938: emendation of description and designation of the neotype strain. Int J Syst Bacteriol 21, 299–303.[CrossRef] [Google Scholar]
  44. Moss, C. W., Kai, A., Lambert, M. A. & Patton, C.(1984). Isoprenoid quinone content and cellular fatty acid composition of Campylobacter species. J Clin Microbiol 19, 772–776. [Google Scholar]
  45. Mullis, K. B. & Faloona, F. A.(1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155, 335–350. [Google Scholar]
  46. Nakazawa, F. & Hoshino, E.(2004). DNA-DNA relatedness and phylogenetic positions of Slackia exigua, Slackia heliotrinireducens, Eggerthella lenta, and other related bacteria. Oral Microbiol Immunol 19, 343–346.[CrossRef] [Google Scholar]
  47. Nakazawa, F., Poco, S. E., Ikeda, T., Sato, M., Kalfas, S., Sundqvist, G. & Hoshino, H.(1999).Cryptobacterium curtum gen. nov., sp. nov., a new genus of Gram-positive anaerobic rod isolated from human oral cavities. Int J Syst Bacteriol 49, 1193–1200.[CrossRef] [Google Scholar]
  48. Rodriguez Jovita, M., Collins, M. D., Sjödén, B. & Falsen, E.(1999). Characterization of a novel Atopobium isolate from the human vagina: description of Atopobium vaginae sp. nov. Int J Syst Bacteriol 49, 1573–1576.[CrossRef] [Google Scholar]
  49. Rzhetsky, A. & Nei, M.(1992). A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9, 945–967. [Google Scholar]
  50. Schoefer, L., Braune, A. & Blaut, M.(2001). A fluorescence quenching test for the detection of flavonoid transformation. FEMS Microbiol Lett 204, 277–280.[CrossRef] [Google Scholar]
  51. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors)(1980). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef] [Google Scholar]
  52. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors)(1989).Approved Lists of Bacterial Names (Amended Edition). Washington, DC: American Society for Microbiology.
  53. Stackebrandt, E., Sproer, C., Rainey, F. A., Burghardt, J., Päuker, O. & Hippe, H.(1997). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47, 1134–1139.[CrossRef] [Google Scholar]
  54. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  55. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  56. Tindall, B. J.(1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef] [Google Scholar]
  57. Tindall, B. J.(1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  58. Uematsu, H., Sato, N., Djais, A. & Hoshino, E.(2006). Degradation of arginine by Slackia exigua ATCC 700122 and Cryptobacterium curtum ATCC 700683. Oral Microbiol Immunol 21, 381–384.[CrossRef] [Google Scholar]
  59. van Belkum, A., Sluijuter, M., de Groot, R., Verbrugh, H. & Hermans, P. W.(1996). Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol 34, 1176–1179. [Google Scholar]
  60. Verhulst, A., van Hespen, H., Symons, F. & Eyssen, H.(1987). Systematic analysis of the long-chain components of Eubacterium lentum. J Gen Microbiol 133, 275–282. [Google Scholar]
  61. Wade, W. G., Downes, J., Dymock, D., Hiom, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B.(1999). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef] [Google Scholar]
  62. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R. B., Abraham, W.-R., Lünsdorf, H. & Timmis, K. N.(1998).Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339–348.[CrossRef] [Google Scholar]
  63. Yarza, P., Richter, M., Peplies, J., Euzéby, J., Amann, R., Schleifer, K. H., Ludwig, W., Glöckner, F. O. & Rosselló-Móra, R.(2008). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31, 241–250.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005900-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005900-0
Loading

Data & Media loading...

Supplements

[PDF file of Supplementary Figs S1 and S2](33 KB)

PDF

TLC of polar lipids extracted from strain 7-10-1-b , [ ] DSM 16106 , DSM 2243 and DSM 16107 . DPG, Diphosphatidylglycerol; PG, phosphatidylglycerol; GL1–4, glycolipids.

IMAGE

[PDF file of Supplementary Tables S1 and S2](33 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error