1887

Abstract

Strain CCUG 50899, a Gram-negative, rod-shaped, non-spore-forming, motile bacterium isolated from industrial environment in Sweden and tentatively assigned to the species , was studied in order to clarify its taxonomic status. 16S rRNA gene sequence similarities placed the strain in the genus , sharing highest similarity with the type strains of (99.3 %), (98.7 %), (98.6 %) and (98.5 %). The fatty acid profile of [] CCUG 50899 (major fatty acids C 7 and C cyclo 8 and presence of C 2-OH), the polar lipid profile (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, two unknown aminolipids and an unknown phospholipid), the presence of the quinone system ubiquinone Q-10 and a polyamine pattern with the major compounds putrescine and spermidine and moderate amounts of -homospermidine supported its affiliation to the genus . DNA–DNA reassociation experiments with the type strains of its closest relatives , , and demonstrated that [] CCUG 50899 should be placed in a novel species, which is distinguishable from related species by a set of biochemical traits. Based on these data, reclassification of [] CCUG 50899 as the type strain of a novel species appears to be justified. Hence, we describe a novel species to accommodate this strain, for which we propose the name sp. nov. The type strain is CCUG 50899 (=DSM 22207).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011668-0
2010-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/321.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011668-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  3. Garrity G. M., Bell J. A., Lilburn T. 2005; Family III. Brucellaceae Breed, Murray and Smith 1957, 394AL . In Bergey's Manual of Systematic Bacteriology , 2nd edn. part C vol 2p–370 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  4. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  5. Holmes B., Popoff M., Kiredjian M., Kersters K. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38:406–416 [CrossRef]
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Scholz H. C., Huber B., Falsen E., Busse H.-J. 2007; Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 57:2513–2518 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Sessitsch A., Schloter M., Huber B., Busse H.-J., Scholz H. C. 2008; Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int J Syst Evol Microbiol 58:1426–1431 [CrossRef]
    [Google Scholar]
  11. Lebuhn M., Achouak W., Schloter M., Berge O., Meier H., Barakat M., Hartmann A., Heulin T. 2000; Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp.nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223 [CrossRef]
    [Google Scholar]
  12. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  13. Richards G. M. 1974; Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal Biochem 57:369–376 [CrossRef]
    [Google Scholar]
  14. Scholz H. C., Tomaso H., Al Dahouk S., Witte A., Schloter M., Kämpfer P., Falsen E., Neubauer H. 2006; Genotyping of Ochrobactrum anthropi by recA -based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. FEMS Microbiol Lett 257:7–16 [CrossRef]
    [Google Scholar]
  15. Scholz H. C., Al Dahouk S., Tomaso H., Neubauer H., Witte A., Schloter M., Kämpfer P., Falsen E., Pfeffer M., Engel M. 2008; Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum - Brucella group by recA and 16S rRNA gene-based comparative sequence analysis. Syst Appl Microbiol 31:1–16 [CrossRef]
    [Google Scholar]
  16. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [CrossRef]
    [Google Scholar]
  17. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  18. Teyssier C., Marchandin H., Siméon De Buochberg M., Ramuz M., Jumas-Bilak E. 2003; Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J Bacteriol 185:2901–2909 [CrossRef]
    [Google Scholar]
  19. Teyssier C., Marchandin H., Jean-Pierre H., Masnou A., Dusart G., Jumas-Bilak E. 2007; Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae , isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  22. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  23. Tripathi A. K., Verma S. C., Chowdhury S. P., Lebuhn M., Gattinger A., Schloter M. 2006; Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680 [CrossRef]
    [Google Scholar]
  24. Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludeña D., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Nodulation of Lupinus by strains of the new species Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327 [CrossRef]
    [Google Scholar]
  25. Velasco J., Romero C., López-Goñi I., Leiva J., Díaz R., Moriyón I. 1998; Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol 48:759–768 [CrossRef]
    [Google Scholar]
  26. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
  27. Zurdo-Piñeiro J. L., Rivas R., Trujillo M. E., Vizcaíno N., Carrasco J. A., Chamber M., Palomares A., Mateos P. F., Martínez-Molina E., Velázquez E. 2007; Ochrobactrum cytisi sp. nov. isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error