1887

Abstract

An obligate anaerobic, Gram-staining-negative, mesophilic, cellulolytic bacterium, strain H1, was isolated from the rumen content of yak. Cells were straight to slightly curved rods, 0.8–1.0×3.0–4.0 μm in size, non-motile and encapsulated with mucous materials. Elliptical and terminal spores that swelled the cells were produced occasionally. The strain grew at 25–45 °C (optimum, 38 °C) and pH 6.0–7.8 (optimum, pH 6.7). Cellulose, cellobiose, xylan, xylose and maltose were used as carbon and energy sources, but not glucose. Products from cellulose and cellobiose fermentation were formic acid, acetic acid, carbon dioxide and trace amounts of ethanol, lactic acid and succinic acid. The genomic DNA G+C content was 33.7±1.2 mol%. The predominant fatty acids were C (27.1 %), C (9.2 %) and iso-C (6.4%). Based on the 16S rRNA gene sequence analysis, strain H1 was affiliated to the clostridial rRNA cluster XIVb and showed the highest 16S rRNA gene sequence similarity to DSM 5427 (96.0 %). These two strains formed a distinct lineage of the family ‘’. Based on data from this polyphasic taxonomic study, a new genus, gen. nov., is proposed. sp. nov. is proposed for strain H1. The type strain of sp. nov. is strain H1 (=CGMCC 1.5065=JCM 14822). was reclassified in the new genus as comb. nov. (type strain RHM5=ATCC 49066=DSM 5427=NCIMB 11756).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014712-0
2010-04-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/845.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014712-0&mimeType=html&fmt=ahah

References

  1. Beguin P., Aubert J. P. 1994; The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58 [CrossRef]
    [Google Scholar]
  2. Bryant M. P., Burkey L. A. 1953; Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci 36:205–217 [CrossRef]
    [Google Scholar]
  3. Cardon B. P., Barker H. A. 1946; Two new amino-acid-fermenting bacteria, Clostridium propionicum and Diplococcus glycinophilus . J Bacteriol 52:629–634
    [Google Scholar]
  4. Chen S., Dong X. 2004; Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int J Syst Evol Microbiol 54:2257–2262 [CrossRef]
    [Google Scholar]
  5. Chen S., Dong X. 2005; Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  7. Cornick N. A., Jensen N. S., Stahl D. A., Hartman P. A., Allison M. J. 1994; Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Bacteriol 44:87–93 [CrossRef]
    [Google Scholar]
  8. Cotta M. A., Whitehead T. R., Falsen E., Moore E., Lawson P. A. 2009; Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59:150–155 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  11. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  12. Jaufeerally-Fakim Y., Dookun A. 2000; Extraction of high quality DNA from polysaccharides-secreting xanthomonads. Science and Technology-Research Journal of the University of Mauritius 6:33–40
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Lomans B. P., Leijdekkers P., Wesselink J.-J., Bakkes P., Pol A., van der Drift C., Op den Camp H. J. M. 2001; Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen.nov., sp. nov. Appl Environ Microbiol 67:4017–4023 [CrossRef]
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  16. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  17. Murray W. D., Hofmann L., Campbell N. L., Madden R. H. 1986; Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste. Syst Appl Microbiol 8:181–184 [CrossRef]
    [Google Scholar]
  18. Pérez J., Muñoz-Dorado J., de la Rubia T., Martínez J. 2002; Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63 [CrossRef]
    [Google Scholar]
  19. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113:125–128 [CrossRef]
    [Google Scholar]
  20. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Schwiertz A., Hold G. L., Duncan S. H., Gruhl B., Collins M. D., Lawson P. A., Flint H. J., Blaut M. 2002; Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst Appl Microbiol 25:46–51 [CrossRef]
    [Google Scholar]
  22. Stanton T. B., Savage D. C. 1983; Roseburia cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. Int J Syst Bacteriol 33:618–627 [CrossRef]
    [Google Scholar]
  23. Tholozan J. L., Touzel J. P., Samain E., Grivet J. P., Prensier G., Albagnac G. 1992; Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol 157:249–257 [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  25. van der Wielen P. W. J. J., Rovers G. M. L. L., Scheepens J. M. A., Biesterveld S. 2002; Clostridium lactatifermentans sp. nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken. Int J Syst Evol Microbiol 52:921–925 [CrossRef]
    [Google Scholar]
  26. Whitehead T. R., Cotta M. A., Collins M. D., Lawson P. A. 2004; Hespellia stercorisuis gen. nov., sp. nov. and Hespellia porcina sp. nov., isolated from swine manure storage pits. Int J Syst Evol Microbiol 54:241–245 [CrossRef]
    [Google Scholar]
  27. Wiegel J., Tanner R., Rainey F. A. 2006; An introduction to the family Clostridiaceae . In The Prokaryotes. A Handbook on the Biology of Bacteria , 3rd edn. vol4 pp 654–678 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer-Verlag;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014712-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014712-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error