1887

Abstract

Strain DCY37 was isolated from a soil sample of a ginseng field in the Republic of Korea and characterized in order to determine its taxonomic position. Cells were Gram-staining-positive, heterotrophic, strictly aerobic, non-motile short rods. 16S rRNA gene sequence analysis revealed that strain DCY37 belongs to the genus . According to 16S rRNA gene sequence analysis, it is closely related to DSM 14217 (98.8 %), DSM 16089 (98.5 %), JCM 12611 (98.5 %), (98.4 %) and (98.3 %). However, DNA–DNA hybridization studies showed reassociation values of less than 70 % between representative strains and DCY37. The DNA G+C content was 64.5 mol%. Strain DCY37 possessed chemotaxonomic markers that were consistent with classification in the genus , i.e. MK-12 and MK-13 as the major menaquinones and anteiso-C, anteiso-C and iso-C as the predominant cellular fatty acids. The major cell wall sugars were ribose, xylose and galactose. The diamino acid in cell-wall hydrolysates of strain DCY37 was ornithine and major cell-wall amino acids were alanine, glycine, -glutamic acid and serine. The major polar lipids were glycolipid, phosphatidylglycerol, diphosphatidylglycerol and unknown aminolipids. Based on these data, DCY37 (=KCTC 19526 =JCM 15516) should be classified as the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015784-0
2010-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2808.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015784-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P. 2001; Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al . 1998) as Microbacterium resistens comb. nov.. Int J Syst Evol Microbiol 51:1267–1276
    [Google Scholar]
  2. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  3. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  4. Busse H.-J., Denner E. B. M., Lubitz W. 1996; Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 47:3–38 [CrossRef]
    [Google Scholar]
  5. Choi J.-H., Jung H.-Y., Kim H.-S., Cho H.-G. 2000; PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16:1056–1058 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  13. Liu J., Nakayama T., Hemmi H., Asano Y., Tsuruoka N., Shimomur K., Nishijima M., Nishino T. 2005; Microbacterium natoriense sp. nov., a novel d-aminoacylase-producing bacterium isolated from soil in Natori, Japan. Int J Syst Evol Microbiol 55:661–665 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids , MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668:189–197 [CrossRef]
    [Google Scholar]
  19. Schippers A., Bosecker K., Spröer C., Schumann P. 2005; Microbacterium oleivorans sp. nov., and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660 [CrossRef]
    [Google Scholar]
  20. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  21. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Young C.-C., Busse H.-J., Langer S., Chu J.-N., Schumann P., Arun A. B., Shen F.-T., Rekha P. D., Kämpfer P. 2010; Microbacterium agarici sp. nov., Microbacterium humi sp. nov., and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei . Int J Syst Evol Microbiol 60:854–860 [CrossRef]
    [Google Scholar]
  25. Zlamala C., Schumann P., Kämpfer P., Valens M., Rosselló-Mora R, Lubitz W., Busse H.-J. 2002; Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1229–1234 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015784-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015784-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error