1887

Abstract

A thermophilic, sulfate-reducing bacterium, designated strain USBA-053, was isolated from a terrestrial hot spring located at a height of 2500 m in the Colombian Andes (5° 45′ 33.29″ N 73° 6′ 49.89″ W), Colombia. Cells of strain USBA-053 were oval- to rod-shaped, Gram-negative and motile by means of a single polar flagellum. The strain grew autotrophically with H as the electron donor and heterotrophically on formate, propionate, butyrate, valerate, isovalerate, lactate, pyruvate, ethanol, glycerol, serine and hexadecanoic acid in the presence of sulfate as the terminal electron acceptor. The main end products from lactate degradation, in the presence of sulfate, were acetate, CO and HS. Strain USBA-053 fermented pyruvate in the absence of sulfate and grew optimally at 57 °C (growth temperature ranged from 50 °C to 62 °C) and pH 6.8 (growth pH ranged from 5.7 to 7.7). The novel strain was slightly halophilic and grew in NaCl concentrations ranging from 5 to 30 g l, with an optimum at 25 g l NaCl. Sulfate, thiosulfate and sulfite were used as electron acceptors, but not elemental sulfur, nitrate or nitrite. The G+C content of the genomic DNA was 56±1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA-053 was a member of the class , with MT-96 as the closest relative (93 % gene sequence similarity). On the basis of physiological characteristics and phylogenetic analysis, it is suggested that strain USBA-053 represents a new genus and novel species for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is USBA-053 ( = KCTC 5670 = DSM 22027).

Funding
This study was supported by the:
  • IFS (International Foundation for Science)
  • Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología (Colciencias)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.020586-0
2011-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/732.html?itemId=/content/journal/ijsem/10.1099/ijs.0.020586-0&mimeType=html&fmt=ahah

References

  1. Alfaro C. 2002 Geoquímica del sistema geotérmico de Paipa pp. 2–15 Bogotá, Colombia: Ingeominas;
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [View Article][PubMed]
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [View Article]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Hatchikian E. C., Ollivier B., Garcia J. L. 2002; Family I. Thermodesulfobacteriaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology (The Archaea and the deeply branching and phototrophic Bacteria), 2nd edn. vol. 1 p. 390 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer-Verlag;
    [Google Scholar]
  9. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–123 Edited by Munro H. H. New York: Academic Press;
    [Google Scholar]
  11. Kuever J., Rainey F. A., Widdel F. 2006a; Family III. Desulfohalobiaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 948–949 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Kuever J., Rainey F. A., Widdel F. 2006b; Family II. Desulfomicrobiaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C p. 944 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  13. Kuever J., Rainey F. A., Widdel F. 2006c; Family I. Syntrophobacteraceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C p. 1021 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  15. Mori K., Kim H., Kakegawa T., Hanada S. 2003; A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290 [View Article][PubMed]
    [Google Scholar]
  16. Ogg C. D., Patel B. K. C. 2009; Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:95–101 [View Article][PubMed]
    [Google Scholar]
  17. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69 [View Article]
    [Google Scholar]
  18. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89 [View Article]
    [Google Scholar]
  19. Rogosa M. 1971; Peptococcaceae, a new family to include the Gram-positive, anaerobic cocci of the genera Peptococcus, Peptostreptococcus and Ruminococcus . Int J Syst Bacteriol 21:234–237 [View Article]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sievert S. M., Kuever J. 2000; Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246[PubMed] [CrossRef]
    [Google Scholar]
  22. Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S. 2007; Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulfate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11:295–303 [View Article]
    [Google Scholar]
  23. Van de Peer Y., Jansen J., De Rijk P., De Wachter R. 1997; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25:111–116 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.020586-0
Loading
/content/journal/ijsem/10.1099/ijs.0.020586-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error