1887

Abstract

A lactic acid bacterium, strain DCY50, isolated from the traditional Korean food kimchi, was studied to determine its taxonomic position. The strain was Gram-stain-positive, catalase-negative, facultatively anaerobic, rod-shaped and motile. The genomic DNA GC content was 49 mol% and the peptidoglycan structure was of the A4α (–Lys–-Asp) type. Chemotaxonomic markers of the strain were consistent with its classification in the genus . Comparisons of 16S rRNA and gene sequences showed that strain DCY50 was most closely related to the type strains of (98.4 and 91.6 % similarity, respectively, for the 16S rRNA and genes), (98.0 and 91.2 %), (97.6 and 93.3 %) and (97.4 and 90.5 %). DNA–DNA relatedness of strain DCY50 to these type strains was below 36 %. According to the genotypic and phenotypic data, strain DCY50 could be differentiated from all known species and should be classified in a novel species, for which the name sp. nov. is proposed; the type strain is DCY50 ( = KCTC 13530  = JCM 16448).

Funding
This study was supported by the:
  • KGCMVP for Technology Development Program of Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021386-0
2011-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/772.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021386-0&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W., Finkelstein H. 1958; Relationship of cell wall staining to gram differentiation. J Bacteriol 75:77–84[PubMed]
    [Google Scholar]
  2. Bozzola J. J., Russell L. D. 1998 Electron Microscopy, 2nd edn. Sudbury, MA: Jones & Bartlett;
    [Google Scholar]
  3. Cheigh H. S., Park K. Y., Lee C. Y. 1994; Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34:175–203 [View Article][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Hammes W. P., Vogel R. F. 1995; The genus Lactobacillus . In The Genera of Lactic Acid Bacteria (Lactic Acid Bacteria, vol. 2) pp. 19–54 Edited by Wood B. J. B., Holzapfel W. H. London: Blackie Academic & Professional;
    [Google Scholar]
  9. Hiraga K., Ueno Y., Sukontasing S., Tanasupawat S., Oda K. 2008; Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. Int J Syst Evol Microbiol 58:1625–1629 [View Article][PubMed]
    [Google Scholar]
  10. Kandler O., Weiss N. 1986; Genus Lactobacillus Beijerinck 1901, 212AL . In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1209–1234 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Kim M. K., Im W. T., Ohta H., Lee M., Lee S. T. 2005; Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43:152–157[PubMed]
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [View Article][PubMed]
    [Google Scholar]
  14. Lee J.-S., Chun C. O., Jung M.-C., Kim W.-S., Kim H.-J., Hector M., Kim S.-B., Park C.-S., Ahn J.-S., Park Y.-H. 1997; Classification of isolates originating from Kimchi using carbon source utilization patterns. J Microbiol Biotechnol 7:68–74
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Mheen T. I., Kwon T. W. 1984; Effect of temperature and salt concentration on Kimchi fermentation. Kor J Food Sci Technol 16:443–450
    [Google Scholar]
  17. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  18. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J. 2007; Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57:2777–2789 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Schillinger U., Lücke F. K. 1987; Identification of lactobacilli from meat and meat products. Food Microbiol 4:199–208 [View Article]
    [Google Scholar]
  21. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  22. So M. H., Kim Y. B. 1995; Identification of psychrophilic lactic acid bacteria isolated from kimchi. Kor J Food Sci Technol 27:495–505
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Thornhill P. J., Cogan T. M. 1984; Use of gas-liquid chromatography to determine the end products of growth of lactic acid bacteria. Appl Environ Microbiol 47:1250–1254[PubMed]
    [Google Scholar]
  25. Valcheva R., Korakli M., Onno B., Prévost H., Ivanova I., Ehrmann M. A., Dousset X., Gänzle M. G., Vogel R. F. 2005; Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 55:763–767 [View Article][PubMed]
    [Google Scholar]
  26. Vancanneyt M., Naser S. M., Engelbeen K., De Wachter M., Van der Meulen R., Cleenwerck I., Hoste B., De Vuyst L., Swings J. 2006; Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov.. Int J Syst Evol Microbiol 56:1553–1557 [View Article][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021386-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021386-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error