1887

Abstract

A red, heterotrophic, marine bacterium, designated strain VR1, was isolated from a sea-water sample collected in the shallow coastal region of Keelung, Taiwan. Cells of the novel strain were facultatively anaerobic, Gram-negative rods that were motile by means of a polar flagellum. The strain grew optimally at 25–30 °C and pH 6–7. Growth required the presence of NaCl, the optimal concentration being about 2 %. The red pigment produced by the cells was identified as prodigiosin. Strain VR1 grew anaerobically by fermenting glucose and other carbohydrates and producing acids and gases. The strain did not require either vitamins or other organic growth factors for growth. It contained 2-OH-16 : 0 and 3-OH-14 : 0 as the major cellular fatty acids. The DNA G+C content was 45·8 mol%. Phenotypic and chemotaxonomic characterization indicated that strain VR1 represents a novel species in the genus . Strain VR1 is phenotypically similar to . However, the reduction of nitrate to nitrite, the ability to utilize -arabinose, melibiose and -glycine as sole carbon sources, the inability to utilize sorbitol as a sole carbon source, resistance to O/129 and susceptibility to erythromycin and novobiocin allow differentiation between . and strain VR1. The name sp. nov. is proposed for the novel species, with strain VR1 (=CCRC 17186 =JCM 11486) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02307-0
2003-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530479.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02307-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L. 1984; Genus II. Photobacterium Beijerinck 1889, 401AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 539–545Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Baumann P., Schubert R. H. W. 1984; Family II. Vibrionaceae Veron 1965, 5245AL. In Bergey's Manual of Systematic Bacteriology vol 1 pp 516–517Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL. In Bergey's Manual of Systematic Bacteriology vol 1 pp 518–538Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Bennasar A., Guasp C., Lalucat J. 1998; Molecular methods for the detection and identification of Pseudomonas stutzeri in pure culture and environmental samples. Microb Ecol 35:22–33 [CrossRef]
    [Google Scholar]
  5. Blake P. A., Weaver R. E., Hollis D. G. 1980; Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34:341–367 [CrossRef]
    [Google Scholar]
  6. Borrego J. J., Castro D., Luque A., Paillard C., Maes P., Garcia M. T., Ventosa A. 1996; Vibrio tapetis sp. nov., the causative agent of the brown ring disease affecting cultured clams. Int J Syst Bacteriol 46:480–484 [CrossRef]
    [Google Scholar]
  7. Cerdà-Cuéllar M., Rosselló-Mora R. A., Lalucat J., Jofre J., Blanch A. 1997; Vibrio scophthalmi sp. nov., a new species from turbot ( Scophthalmus maximus . Int J Syst Bacteriol 47:58–61 [CrossRef]
    [Google Scholar]
  8. Egidius E., Wiik R., Andersen K., Hoff K. A., Hjeltnes B. 1986; Vibrio salmonicida sp. nov., a new fish pathogen. Int J Syst Bacteriol 36:518–520 [CrossRef]
    [Google Scholar]
  9. Farmer J. J. III, Hickman-Brenner F. W., Fanning G. R., Gordon C. M., Brenner D. J. 1988; Characterization of Vibrio metschnikovii and Vibrio gazogenes by DNA-DNA hybridization and phenotype. J Clin Microbiol 26:1993–2000
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 35:22–33
    [Google Scholar]
  11. Fesefeldt A., Kloos K., Bothe H., Lemmer H., Gliesche C. G. 1998; Distribution of denitrification and nitrogen fixation genes in Hyphomicrobium spp. and other budding bacteria. Can J Microbiol 44:181–186 [CrossRef]
    [Google Scholar]
  12. Gauthier M. J. 1976; Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int J Syst Bacteriol 26:459–466 [CrossRef]
    [Google Scholar]
  13. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas , Shewanella , and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761 [CrossRef]
    [Google Scholar]
  14. Guerinot M. L., Colwell R. R. 1985; Enumeration, isolation, and characterization of N2-fixing bacteria from seawater. Appl Environ Microbiol 50:350–355
    [Google Scholar]
  15. Guerinot M. L., West P. A., Lee J. V., Colwell R. R. 1982; Vibrio diazotrophicus sp. nov., a marine nitrogen-fixing bacterium. Int J Syst Bacteriol 32:350–357 [CrossRef]
    [Google Scholar]
  16. Hada H. S., West P. A., Lee J. V., Stemmler J., Colwell R. R. 1984; Vibrio tubiashii sp. nov., a pathogen of bivalve mollusks. Int J Syst Bacteriol 34:1–4 [CrossRef]
    [Google Scholar]
  17. Harwood C. S. 1978; Beneckea gazogenes sp. nov., a red, facultatively anaerobic marine bacterium. Curr Microbiol 1:233–238 [CrossRef]
    [Google Scholar]
  18. Huq A., Colwell R. R. 1995; Vibrios in the marine and estuarine environments. J Mar Biotechnol 3:60–63
    [Google Scholar]
  19. Ishimaru K., Akagawa-Matsushita M., Muroga K. 1996; Vibrio ichthyoenteri sp. nov., a pathogen of Japanese flounder ( Paralichthys olivaceus ) larvae. Int J Syst Bacteriol 46:155–159 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  21. Lee K. H., Ruby E. G. 1994; Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J Bacteriol 176:1985–1991
    [Google Scholar]
  22. Leisman G., Cohn D. H., Nealson K. H. 1980; Bacterial origin of luminescence in marine animals. Science 208:1271–1273 [CrossRef]
    [Google Scholar]
  23. MacDonald N. L., Stark J. R., Austin B. 1986; Bacterial microflora in the gastro-intestinal tract of Dover sole ( Solea solea L.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol Lett 35:107–111 [CrossRef]
    [Google Scholar]
  24. MacDonell M. T., Colwell R. R. 1985; The phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  25. Nair S., Kita-Tsukamoto K., Simidu U. 1988; Bacterial flora of healthy and abnormal chaetognaths. Nippon Suisan Gakkaishi 54:491–496 [CrossRef]
    [Google Scholar]
  26. National Committee for Clinical Laboratory Standards 1990 Performance Standards for Antimicrobial Disk Susceptibility Tests, 4th edn. Approved Standard M2-A4 Villanova, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  27. Onarheim A. M., Wiik R., Burghardt J., Stackebrandt E. 1994; Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov. Syst Appl Microbiol 17:370–379 [CrossRef]
    [Google Scholar]
  28. Reichelt J. L., Nealson K. H., Hastings J. W. 1977; The specificity of symbiosis: pony fish and luminescent bacteria. Arch Microbiol 112:157–161 [CrossRef]
    [Google Scholar]
  29. Ruby E. G., Asato L. M. 1993; Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159:160–167 [CrossRef]
    [Google Scholar]
  30. Ruby E. G., Morin J. G. 1978; Specificity of symbiosis between deep-sea fishes and psychrotrophic luminous bacteria. Deep Sea Res 25:161–167 [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  32. Schiewe M. H., Trust T. J., Crosa J. H. 1981; Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr Microbiol 6:343–348 [CrossRef]
    [Google Scholar]
  33. Shieh W. Y., Jean W. D. 1998; Alterococcus agarolyticus , gen. nov., sp. nov: a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44:637–645 [CrossRef]
    [Google Scholar]
  34. Shieh W. Y., Lin Y. M. 1992; Nitrogen fixation (acetylene reduction) associated with the zoanthid Palythoa tuberculosa Esper. J Exp Mar Biol Ecol 163:31–41 [CrossRef]
    [Google Scholar]
  35. Shieh W. Y., Lin Y. M. 1994; Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bull Mar Sci 54:557–564
    [Google Scholar]
  36. Shieh W. Y., Liu C. M. 1996; Denitrification by a novel halophilic fermentative bacterium. Can J Microbiol 42:507–514 [CrossRef]
    [Google Scholar]
  37. Shieh W. Y., Yang J. T. 1997; Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J Exp Mar Biol Ecol 218:229–241 [CrossRef]
    [Google Scholar]
  38. Shieh W. Y., Simidu U., Maruyama Y. 1989; Enumeration and characterization of nitrogen-fixing bacteria in an eelgrass ( Zostera marina ) bed. Microb Ecol 18:249–259 [CrossRef]
    [Google Scholar]
  39. Shieh W. Y., Chen A.-L., Chiu H.-H. 2000; Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329 [CrossRef]
    [Google Scholar]
  40. Simidu U., Tsukamoto K. 1985; Habitat segregation and biochemical activities of marine members of the family Vibrionaceae . Appl Environ Microbiol 50:781–790
    [Google Scholar]
  41. Simidu U., Kaneko E., Aiso K. 1969; Microflora of fresh and stored flat-fish ( Kareus bicoloratus . Bull Jpn Soc Sci Fish 35:77–82 [CrossRef]
    [Google Scholar]
  42. Simidu U., Ashino K., Kaneko E. 1971; Bacterial flora of phyto- and zoo-plankton in the inshore water of Japan. Can J Microbiol 17:1157–1160 [CrossRef]
    [Google Scholar]
  43. Simidu U., Tsukamoto K., Akagi Y. 1982; Heterotrophic bacterial population in Bengal Bay and the South China Sea. Bull Jpn Soc Sci Fish 48:425–431 [CrossRef]
    [Google Scholar]
  44. Sochard M. R., Wilson D. F., Austin B., Colwell R. R. 1979; Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol 37:750–759
    [Google Scholar]
  45. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  46. Suutari M., Liukkonen K., Laakso S. 1990; Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474 [CrossRef]
    [Google Scholar]
  47. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  48. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1998; A new approach to separate the genus Photobacterium from Vibrio with RFLP patterns by Hha I digestion of PCR-amplified 16S rDNA. Curr Microbiol 36:171–174 [CrossRef]
    [Google Scholar]
  49. Welham K. J., Domin M. A., Scannell D. E., Cohen E., Ashton D. S. 1998; The characterization of micro-organisms by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12:176–180 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02307-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02307-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error