1887

Abstract

Three novel strains of cold-adapted bacteria, ST-82, ST-10 and ST-92, were isolated from freshwater sediments. These three isolates were very similar to each other in phenotypic and chemotaxonomic traits, as well as in 16S rDNA sequence. The strains were Gram-negative, elongated filament-like rods that formed bright yellow colonies. They showed neither flexirubin pigments nor gliding motility. The strains were able to hydrolyse casein, gelatin, starch, agar, aesculin, urea, uric acid and tyrosine. They also lysed cells of and . The temperature range for growth was 0–25 °C, with optimum growth occurring at 15–20 °C. For all isolates, protease secretion increased as temperature decreased. Sodium chloride inhibited their growth, although the strains tolerated up to 1·5 % (w/v) NaCl. Menaquinone-6 was the major respiratory quinone. The major cellular fatty acids were C, iso-C, anteiso-C, C, iso-C, C 7, iso-C, iso-C, iso-C 3-OH and iso-C 3-OH. The DNA G+C content was 34·0–34·8 mol%. Phylogenetic analysis based on 16S rDNA sequences suggested that the strains belonged to the genus and were closely related to and , with sequence similarities of 96·9 and 96·3 %, respectively. In physiological and biochemical analyses, the isolates were differentiated from all known members of the genus . The name is proposed for these novel strains, and the type strain is ST-82 (=JCM 11473 =DSM 15094).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02369-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530519.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02369-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Grimont P. A. D. 1989; Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev. and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int J Syst Bacteriol 39346–354 [CrossRef]
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym Cytophaga aquatilis Strohl and Tait 1978. Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  4. Bowman J. P., Cavanagh J., Austin J. J., Sanderson K. 1996; Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848 [CrossRef]
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Brown M. V., Nichols D. S., McMeekin T. A. 1997; Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078
    [Google Scholar]
  6. Eilers H., Pernthaler J., Glöckner F. O., Amann R. 2000; Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051 [CrossRef]
    [Google Scholar]
  7. Fautz E., Reichenbach H. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [CrossRef]
    [Google Scholar]
  8. Feller G., Narinx E., Arpigny J. L., Aittaleb M., Baise E., Genicot S., Gerday C. 1996; Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202 [CrossRef]
    [Google Scholar]
  9. Hanada S., Kawase Y., Hiraishi A., Takaichi S., Matsuura K., Shimada K., Nagashima K. V. P. 1997; Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47:408–413 [CrossRef]
    [Google Scholar]
  10. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov: a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  11. Hänninen M.-L., Happonen I., Saari S., Jalava K. 1996; Culture and characteristics of Helicobacter bizzozeronii , a new canine gastric Helicobacter sp. Int J Syst Bacteriol 46:160–166 [CrossRef]
    [Google Scholar]
  12. Hattori S., Kamagata Y., Hanada S., Shoun H. 2000; Thermacetogenium phaeum gen. nov., sp. nov. a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609 [CrossRef]
    [Google Scholar]
  13. Höfle M. G. 1992; Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis. Appl Environ Microbiol 58:3387–3394
    [Google Scholar]
  14. Humphry D. R., George A., Black G. W., Cummings S. P. 2001; Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243
    [Google Scholar]
  15. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  16. Kim H., Honda D., Hanada S., Kanamori N., Shibata S., Miyaki T., Nakamura K., Oyaizu H. 2000; A deeply branched novel phylotype found in Japanese paddy soils. Microbiology 146:2309–2315
    [Google Scholar]
  17. Llobet-Brossa E., Rosselló-Mora R., Amann R. 1998; Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696
    [Google Scholar]
  18. Margesin R., Schinner F. 1994; Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14 [CrossRef]
    [Google Scholar]
  19. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 501055–1063 [CrossRef]
    [Google Scholar]
  20. McCammon S. A., Innes B. H., Bowman J. P., Franzmann P. D., Dobson S. J., Holloway P. E., Skerratt J. H., Nichols P. D., Rankin L. M. 1998; Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 48:1405–1412 [CrossRef]
    [Google Scholar]
  21. McCurdy H. D. 1969; Studies on the taxonomy of the Myxobacterales . I. Record of Canadian isolates and survey of methods. Can J Microbiol 15:1453–1461 [CrossRef]
    [Google Scholar]
  22. Ravenschlag K., Sahm K., Amann R. 2001; Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard. Appl Environ Microbiol 67:387–395 [CrossRef]
    [Google Scholar]
  23. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. 1968; A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta 21:197–203 [CrossRef]
    [Google Scholar]
  24. Rosselló-Mora R., Thamdrup B., Schäfer H., Weller R., Amann R. 1999; The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst Appl Microbiol 22:237–248 [CrossRef]
    [Google Scholar]
  25. Russell N. J. 1998; Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21
    [Google Scholar]
  26. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–653Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 40:846–849
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  31. Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. 2000; Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02369-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02369-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error