1887

Abstract

The taxonomic position of a chlorophenol-degrading bacterium, strain S37, was investigated. The 16S rDNA sequence indicated that this strain belongs to the genus , exhibiting high sequence similarity to the 16S rDNA sequences of LMG 18877 (98·8 %), LMG 17324 (98·2 %), IFO 15098 (95 %) and GIFU 11458 (92 %). These strains (except IFO 15098, which was not investigated) and the novel isolate accumulated polyhydroxyalkanoates consisting of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from glucose as carbon source. The G+C content of the DNA of strain S37 was 65·5 mol%. The major cellular fatty acids of this strain were octadecenoic acid (18 : 17), heptadecenoic acid (17 : 16) and hexadecanoic acid (16 : 0). The results of DNA–DNA hybridization experiments and its physiological characteristics clearly distinguished the novel isolate from all known species and indicated that the strain represents a novel species. Therefore, the species sp. nov. is proposed, with strain S37 (=LMG 20986 =DSM 14889) as the type strain. The transfer of to the genus as comb. nov. is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02375-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530473.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02375-0&mimeType=html&fmt=ahah

References

  1. Aranda C., Godoy F., González B., Homo J., Martínez M. 1999; Effects of glucose and phenylalanine upon 2,4,6-trichlorophenol degradation by Pseudomonas paucimobilis S37T cells in non-growth state. Microbios 100:73–82
    [Google Scholar]
  2. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. 1988; Pseudomonas oleovorans as a source of poly( β -hydroxyalkanoates) for potential applications as biodegradable polyester. Appl Environ Microbiol 54:1977–1982
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Godoy F., Zenteno P., Cerda F., González B., Martínez M. 1999; Tolerance to trichlorophenols in microorganism from pristine and polluted zone of the Biobío river (central Chile. Chemosphere 38:655–662 [CrossRef]
    [Google Scholar]
  5. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A. 2001; Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov. a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid. Int J Syst Evol Microbiol 51:1133–1142 [CrossRef]
    [Google Scholar]
  6. Kessler B., Palleroni N. J. 2000; Taxonomic implications of synthesis of poly- β -hydroxybutyrate and other poly- β -hydroxyalkanoates by aerobic pseudomonads. Int J Syst Evol Microbiol 50:711–713 [CrossRef]
    [Google Scholar]
  7. Ludwig W., Strunk O. 1996 arb: a software environment for sequence data Munich: Technische Universität München; http://www.mikro.biologie.tu-muenchen.de/
    [Google Scholar]
  8. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113:125–128 [CrossRef]
    [Google Scholar]
  9. Rehm B. H. A. 2001; Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol 57:579–592 [CrossRef]
    [Google Scholar]
  10. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222 [CrossRef]
    [Google Scholar]
  11. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera Sphingobium Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  12. Vancanneyt M., Schut F., Snauwaert C., Goris J., Swings J., Gottschal J. C. 2001; Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79
    [Google Scholar]
  13. Vandamme P., Vancanneyt M., Pot B. 10 other authors 1992; Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 42:344–356 [CrossRef]
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  15. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov. Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  16. Yeber M. C., Freer J., Martínez M., Mansilla H. D. 2000; Bacterial response to photocatalytic degradation of 6-chlorovanillin. Chemosphere 41:1257–1261 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02375-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02375-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error