1887

Abstract

A Gram-positive, rod-shaped, endospore-forming, halophilic bacterium (strain HSL-3) was isolated from a salt lake near Hwajinpo beach on the East Sea in Korea and was subjected to a polyphasic taxonomic study. Strain HSL-3 grew optimally in the presence of 2–10 % (w/v) NaCl. Strain HSL-3 showed poor growth in the absence of NaCl and grew in the presence of less than 23 % NaCl. The cell wall peptidoglycan type of strain HSL-3 was A4 based on -orn–-Asp. The predominant menaquinone found in strain HSL-3 was menaquinone-7 (MK-7). Strain HSL-3 had a cellular fatty acid profile containing large amounts of branched fatty acids; the major fatty acids were anteiso-C, iso-C and iso-C. The DNA G+C content of strain HSL-3 was 45 mol%. Phylogenetic analysis based on 16S rDNA sequences showed that strain HSL-3 falls within the radiation of the cluster comprising species. Strain HSL-3 exhibited levels of 16S rDNA similarity of 97·4–98·4 % to the type strains of species. Levels of DNA–DNA relatedness between strain HSL-3 and the type strains of all validly named species were in the range 7·3–9·2 %. On the basis of phenotypic and phylogenetic data and the genomic distinctiveness, strain HSL-3 (=KCCM 41590=JCM 11546) should be placed in the genus as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02421-0
2003-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530687.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02421-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 1743AL. In Bergey's Manual of Systematic Bacteriology vol. 2 pp 1105–1139Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Claus D., Fahmy F., Rolf H. J., Tosunoglu N. 1983; Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506 [CrossRef]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip: phylogenetic inference package, version 3.5. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  9. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950) Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  13. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–66 [CrossRef]
    [Google Scholar]
  16. Niimura Y., Koh E., Yanagida F., Suzuki K., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov. a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301 [CrossRef]
    [Google Scholar]
  17. Priest F. G. 1981; DNA homology in the genus Bacillus . In The Aerobic Endospore-forming Bacteria pp 33–57Edited by Berkeley R. C., Goodfellow M. London: Academic Press;
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  20. Schlesner H., Lawson P. A., Collins M. D., Weiss N., Wehmeyer U., Völker H., Thomm M. 2001; Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-d-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51:425–431
    [Google Scholar]
  21. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera. Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946 [CrossRef]
    [Google Scholar]
  22. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  23. Slepecky R. A., Hemphill H. E. 1991; The genus Bacillus – nonmedical. In The Prokaryotes pp 1663–1696Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  24. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K.-H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov. and transfer of Sporosarcina halophilia to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp 152–189Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analysis on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  31. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  32. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  33. Yoon J.-H., Weiss N., Lee K.-C., Lee I.-S., Kang K. H., Park Y.-H. 2001; Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 512087–2093 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02421-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02421-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error