1887

Abstract

Two strains of Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped, methane-oxidizing bacteria were isolated from an acidic forest cambisol near Marburg, Germany, and were designated as strains BL2 and A1. These bacteria were morphologically and phenotypically similar to K. The cells possess a highly specific bipolar appearance. They lack the intracytoplasmic membranes common to all methane-oxidizing bacteria except , but contain a vesicular membrane system connected to the cytoplasmic membrane. A soluble methane monooxygenase was present, but no particulate methane monooxygenase could be detected. These bacteria utilize the serine pathway for carbon assimilation. Strains BL2 and A1 are moderately acidophilic, mesophilic organisms capable of growth at pH values between 4·5 and 7 (with an optimum at pH 5·5) and at temperatures between 4 and 30 °C. Compared with K, these strains have greater tolerance of cold temperatures, dissolved salts and methanol. On the basis of 16S rRNA gene sequence identity, of species with validly published names, strain BL2 is most closely related to K (97·3 % identity), subsp. ATCC 9039 (97·1 %) and B2 (96·2 %). The DNA G+C content is 60 mol% and the major phospholipid fatty acid is 18 : 17. Strain BL2 showed only 21–22 % DNA–DNA hybridization with K. The data therefore suggest that strains BL2 and A1 represent a novel species of ; the name sp. nov. is proposed, with strain BL2 (=DSM 15510=NCIMB 13906) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02481-0
2003-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531231.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02481-0&mimeType=html&fmt=ahah

References

  1. Andersen B. L., Bidoglio G., Leip A., Rembges D. 1998; A new method to study simultaneous methane oxidation and methane production in soils. Global Biogeochem Cycles 12:587–594 [CrossRef]
    [Google Scholar]
  2. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  3. Auman A. J., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  4. Becking J.-H. 1984; Genus Beijerinckia Derx 1950, 145AL. In Bergey's Manual of Systematic Bacteriology vol. 1 pp 311–321Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  6. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  7. Dedysh S. N., Panikov N. S., Liesack W., Großkopf R., Zhou J., Tiedje J. M. 1998; Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282:281–284 [CrossRef]
    [Google Scholar]
  8. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov. sp. nov. a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [CrossRef]
    [Google Scholar]
  9. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov. sp. nov. a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261
    [Google Scholar]
  10. Dunfield P. F., Tchawa Yimga M., Dedysh S. N., Berger U., Liesack W., Heyer J. 2002; Isolation of a Methylocystis strain containing a novel pmoA -like gene. FEMS Microbiol Ecol 41:17–26 [CrossRef]
    [Google Scholar]
  11. Gerhardt P. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  13. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  14. Hanson R. S., Netrusov A. I., Tsuji K. 1991; The obligate methanotrophic bacteria Methylococcus Methylomonas , and Methylosinus . In The Prokaryotes pp 2350–2365Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  15. Henckel T., Friedrich M., Conrad R. 1999; Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 651980–1990
    [Google Scholar]
  16. Henckel T., Jäckel U., Schnell S., Conrad R. 2000; Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808 [CrossRef]
    [Google Scholar]
  17. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonium monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  19. Luft J. H. 1964; Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J Cell Biol 23:54A–55A
    [Google Scholar]
  20. Martin K., Schumann P., Rainey F. A., Schuetze B., Groth I. 1997; Janibacter limosus gen. nov., sp. nov. a new actinomycete with meso -diaminopimelic acid in the cell wall. Int J Syst Bacteriol 47:529–534 [CrossRef]
    [Google Scholar]
  21. Morton J. D., Hayes K. F., Semrau J. D. 2000; Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 66:1730–1733 [CrossRef]
    [Google Scholar]
  22. Murrell J. C., McDonald I. R., Bourne D. G. 1998; Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114 [CrossRef]
    [Google Scholar]
  23. Phelps P. A., Agarwal S. K., Speitel G. E. Jr, Georgeou E. 1992; Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl Environ Microbiol 58:3701–3708
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Strunk O., Ludwig W. 1996 arb: a software environment for sequence data Munich: Technische Universität München; http://www.arb-home.de/
    [Google Scholar]
  26. Takeda K. 1988; Characteristics of a nitrogen-fixing methanotroph, Methylocystis T-1. Antonie van Leeuwenhoek 54:521–534 [CrossRef]
    [Google Scholar]
  27. Trotsenko Y. A., Khmelenina V. N. 2002; Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131 [CrossRef]
    [Google Scholar]
  28. Wang F. L., Bettany J. R. 1997; Methane emission from Canadian prairie and forest soils under short-term flooding conditions. Nutr Cycl Agroecosyst 49:197–202 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Yavitt J. B., Downey D. M., Lang G. E., Sexstone A. J. 1990; Methane consumption in two temperate forest soils. Biogeochemistry 9:39–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02481-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02481-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error