1887

Abstract

Two airborne bacterial isolates designated V45 and V54A were characterized in order to determine their taxonomic position. 16S rDNA sequence analysis showed that the two isolates shared 98·1 % sequence similarity. Highest sequence similarities (98·0–98·5 %) were found to DSM 43110 and IFO 14650. Detection of a quinone system with the predominant compound MK-9(H), a polar lipid pattern containing phosphatidylglycerol, a fatty acid profile with the predominant acids C iso and C anteiso and the diagnostic cell-wall diamino acid -lysine supported the assignment of the novel isolates to the genus . The two isolates could be distinguished from by the presence of glycine in the peptidoglycan, and the detection of the cell-wall sugar galactose differentiates them from the two established species of the genus . Each of the two isolates displayed a unique biochemical profile. Results from DNA–DNA hybridizations clearly demonstrated that V45 and V54A represent separate species. Based on these data, it is proposed that V45 (=IFO 16525=CCM 7044) and V54A (=IFO 16526 =CCM 7043) be classified as the type strains of two novel species, for which the names sp. nov. and sp. nov. are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02522-0
2003-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531503.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02522-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J. 1997; Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium , Corynebacterium , and Tsukamurella . Int J Syst Bacteriol 47:270–277 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Hamana K. 1995; Polyamine distribution patterns in coryneform bacteria and related Gram-positive eubacteria. Ann Coll Med Care Technol Gunma Univ 16:69–77
    [Google Scholar]
  5. Kalakoutskii L. V., Agre N. S., Prauser H., Evtushenko L. I. 1989; Genus Promicromonospora Krasil'nikov, Kalakoutskii and Kirillova 1961a, 107AL. In Bergey's Manual of Systematic Bacteriology vol 4 pp 2392–2395Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  8. Krasilnikov N. A., Kalakoutskii L. V., Kirillova N. F. 1961; A new genus of Actinomycetales , Promicromonospora , gen. nov. Bull Acad Sci USSR Ser Biol 1:107–112
    [Google Scholar]
  9. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  10. Lechevalier H. A., Lechevalier M. P. 1981; Actinomycete genera “in search of a family”. In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria pp 2118–2123Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Moaledji K. 1986; Comparison of gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310 [CrossRef]
    [Google Scholar]
  13. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  14. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  15. Schumann P., Weiss N., Stackebrandt E. 2001; Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E., Breymann S., Steiner U., Prauser H., Weiss N., Schumann P. 2002; Re-evaluation of the status of the genus Oerskovia , reclassification of Promicromonospora enterophila (Jáger et al . 1983) as Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 52:1105–1111 [CrossRef]
    [Google Scholar]
  17. Takahashi Y., Tanaka Y., Iwai Y., Ōmura S. 1987; Promicromonospora sukumoe sp. nov., a new species of the Actinomycetales . J Gen Appl Microbiol 33:507–519 [CrossRef]
    [Google Scholar]
  18. Takeuchi M., Sakane T., Nihira T., Yamada Y., Imai K. 1999; Corynebacterium terpenotabidum sp. nov., a bacterium capable of degrading squalene. Int J Syst Bacteriol 49:223–229 [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  22. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of “ Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  23. Zlamala C., Schumann P., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002a; Agrococcus baldri sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1211–1216 [CrossRef]
    [Google Scholar]
  24. Zlamala C., Schumann P., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002b; Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1229–1234 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02522-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02522-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

IMAGE

Supplementary material 2

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error