1887

Abstract

A moderately thermophilic bacterium is described, strain N2-214, that was isolated from an enrichment culture, growing on caprolactone, obtained from a sample from a water-treatment sludge aerobic digester operating at temperatures around 60 °C. The organism was aerobic, Gram-negative, oxidase- and catalase-positive, with a polar flagellum, and capable of growth at temperatures as high as 61 °C. The major fatty acids of strain N2-214 were C, C and cyclo-C. The phylogenetic relationships of the strain, derived from 16S rRNA gene sequence comparisons, demonstrated it to be a member of the -subclass of the . The highest 16S rDNA sequence similarity of isolate N2-214 was to (91·9 %), (92 %) and (92·7 %). On the basis of phylogenetic analyses and physiological and chemotaxonomic characteristics, it is proposed that isolate N2-214 (=DSM 15129=LMG 21637) represents a new genus and species, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02538-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531405.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02538-0&mimeType=html&fmt=ahah

References

  1. Anders H.-J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G. 1995; Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera , as Thauera aromatica sp. nov., and Azoarcus , as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria . Int J Syst Bacteriol 45:327–333 [CrossRef]
    [Google Scholar]
  2. Aragno M., Schlegel H. G. 1992; The mesophilic hydrogen oxidizing (Knallgas) bacteria. In The Prokaryotes , 2nd edn. pp 3917–3933Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  3. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thiopara gen. et sp. nov. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can J Microbiol 22:1509–1517 [CrossRef]
    [Google Scholar]
  4. Carlton B. C., Brown B. J. 1981; Gene mutation. In Manual Methods for General Microbiology pp 409–443Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Felsenstein J. 1989; phylip – phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  6. Goto E., Kodama T., Minoda Y. 1978; Growth and taxonomy of thermophilic hydrogen bacteria. Agr Biol Chem 42:1305–1308 [CrossRef]
    [Google Scholar]
  7. Hayashi N. R., Ishida T., Yokota A., Kodama T., Igarashi Y. 1999; Hydrogenophilus thermoluteolus gen. nov. sp. nov. a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49:783–786 [CrossRef]
    [Google Scholar]
  8. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E. 2000; Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959 [CrossRef]
    [Google Scholar]
  11. Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I. 1993; Thauera selenatis gen. nov., sp. nov. a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142 [CrossRef]
    [Google Scholar]
  12. Manaia C. M., Moore E. R. B. 2002; Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto . Int J Syst Evol Microbiol 52:2203–2209 [CrossRef]
    [Google Scholar]
  13. Manaia C. M., Nunes O. C., Nogales B. 2003; Caenibacterium thermophilum gen. nov., sp. nov. isolated from a thermophilic aerobic digester of municipal sludge. Int J Syst Evol Microbiol 53:1375–1382 [CrossRef]
    [Google Scholar]
  14. Mechichi T., Stackebrandt E., Gad'on N., Fuchs G. 2002; Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35 [CrossRef]
    [Google Scholar]
  15. Moreira C., Rainey F. A., Nobre M. F., da Silva M. T., da Costa M. S. 2000; Tepidimonas ignava gen. nov., sp. nov. a new chemolithoheterotrophic and slightly thermophilic member of the β - Proteobacteria . Int J Syst Evol Microbiol 50:735–742 [CrossRef]
    [Google Scholar]
  16. Odintsova E. V., Jannasch H. W., Mamone J. A., Langworthy T. A. 1996; Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Bacteriol 46:422–428 [CrossRef]
    [Google Scholar]
  17. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  18. Reinhold-Hurek B., Hurek T. 2000; Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov. sp. nov. Int J Syst Evol Microbiol 50:649–659 [CrossRef]
    [Google Scholar]
  19. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J. 1993; Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass ( Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584 [CrossRef]
    [Google Scholar]
  20. Shooner F., Bousquet J., Tyagi R. D. 1996; Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46:409–415 [CrossRef]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Microbiology pp 409–443Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Song B., Young L. Y., Palleroni N. J. 1998; Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol 48:889–894 [CrossRef]
    [Google Scholar]
  23. Song B., Häggblom M. M., Zhou J., Tiedje J. M., Palleroni N. J. 1999; Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 49:1129–1140 [CrossRef]
    [Google Scholar]
  24. Song B., Palleroni N. J., Häggblom M. M. 2000; Description of strain 3CB-1, a genomovar of Thauera aromatica , capable of degrading 3-chlorobenzoate coupled to nitrate reduction. Int J Syst Evol Microbiol 50:551–558 [CrossRef]
    [Google Scholar]
  25. Song B., Palleroni N. J., Kerkhof L. J., Häggblom M. M. 2001; Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602
    [Google Scholar]
  26. Springer N., Ludwig W., Philipp B., Schink B. 1998; Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 48:953–956 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  28. Stöhr R., Waberski A., Liesack W., Völker H., Wehmeyer U., Thomm M. 2001; Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing β -proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488
    [Google Scholar]
  29. Suzuki K., Goodfellow M., O'Donnell A. G. 1993; Cell envelopes and classification. In Handbook of New Bacterial Systematics pp 195–250Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  30. Takeda M., Kamagata Y., Ghiorse W. C., Hanada S., Koizumi J. 2002; Caldimonas manganoxidans gen. nov., sp nov., a poly(3-hydroxybutyrate)-degrading, manganese-oxidizing thermophile. Int J Syst Evol Microbiol 52:895–900 [CrossRef]
    [Google Scholar]
  31. Ward D. M., Ferris M. J., Nold S. C., Bateson M. M. 1998; A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370
    [Google Scholar]
  32. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol I p 299–488Edited by Ratledge S. G., Wilkinson C. London: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02538-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02538-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error