1887

Abstract

Four halophilic archaeal strains, designated TNN18, TBN12, TNN28 and TBN19, were isolated from brines sampled from two artificial marine solar salterns in eastern China. Strains TNN18 and TNN28 were isolated from the Tainan marine solar saltern, whereas strains TBN12 and TBN19 were from the Taibei marine solar saltern. Colonies of the four strains were red-pigmented and their cells were pleomorphic, motile, Gram-reaction-negative rods. Strains TNN18 and TBN12 were able to grow at 25–50 °C (optimum 37 °C), in 10–30 % (w/v) NaCl (optimum 15 %), with 0–1.0 M MgCl (optimum 0.05 M) and at pH 5.5–9.0 (optimum pH 7.0–7.5), while strains TNN28 and TBN19 were able to grow at 20–50 °C (optimum 37 °C), in 15-30 % (w/v) NaCl (optimum 18–20 %), in 0.005–1.0 M MgCl (optimum 0.01–0.3 M) and at pH 6.0–9.0 (optimum pH 7.0–7.5). Cells of these strains lyse in distilled water; minimal NaCl concentrations to prevent cell-lysis are 10 % (w/v) for strains TNN18 and TBN12 and 12 % (w/v) for strains TNN28 and TBN19. The major polar lipids of strains TNN18 and TBN12 were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and one major glycolipid (GL1), which was chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). Minor amounts of other lipids (GL0, GL2, GL3 and GL4) were also detectable. The polar lipid profiles of strains TNN28 and TBN19 contained PG, PGP-Me, GL1, which was chromatographically identical to S-DGD-1, and three to four minor unidentified glycolipids (GL2–GL5). Phylogenetic analyses revealed that strains TNN18 and TBN12 formed a distinct clade with strains of the closest related species, (91.5–91.8 % 16S rRNA gene sequence similarity) and strains TNN28 and TBN19 formed a distinct clade with strains of the species (89.9–93.3 % similarity) and two members of the genus (92.5–93.3 % similarity). The DNA G+C contents of strains TNN18, TBN12, TNN28 and TBN19 were 61.5, 62.4, 61.9 and 61.5 mol%, respectively. DNA–DNA hybridization values between strains TNN18 and TBN12, and strains TNN28 and TBN19 were 82.9 % and 88.2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic properties suggest that the four strains represent two novel species of two new genera within the family , for which the names gen. nov., sp. nov. (type strain TNN18 = CGMCC 1.10118 = JCM 16424) and gen. nov., sp. nov. (type strain TNN28 = CGMCC 1.10123 = JCM 16425) are proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970006)
  • State key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (Award SKLMR-20100604)
  • MEL Young Scientist Visiting Fellowship (Award MELRS0931)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025841-0
2011-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2682.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025841-0&mimeType=html&fmt=ahah

References

  1. Allen M. A., Goh F., Leuko S., Echigo A., Mizuki T., Usami R., Kamekura M., Neilan B. A., Burns B. P. 2008; Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. Int J Syst Evol Microbiol 58:798–802 [View Article][PubMed]
    [Google Scholar]
  2. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491[PubMed]
    [Google Scholar]
  3. Antunes A., Taborda M., Huber R., Moissl C., Nobre M. F., da Costa M. S. 2008; Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus . Int J Syst Evol Microbiol 58:215–220 [View Article][PubMed]
    [Google Scholar]
  4. Burns D. G., Janssen P. H., Itoh T., Kamekura M., Li Z., Jensen G., Rodríguez-Valera F., Bolhuis H., Dyall-Smith M. L. 2007; Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392 [View Article][PubMed]
    [Google Scholar]
  5. Cui H.-L., Lin Z.-Y., Dong Y., Zhou P.-J., Liu S.-J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206 [View Article][PubMed]
    [Google Scholar]
  6. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13:31–37 [View Article][PubMed]
    [Google Scholar]
  7. Cui H.-L., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010a; Halosarcina limi sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halosarcina . Int J Syst Evol Microbiol 60:2462–3466 [View Article][PubMed]
    [Google Scholar]
  8. Cui H.-L., Yang X., Gao X., Li X.-Y., Xu X.-W., Zhou Y.-G., Liu H.-C., Zhou P.-J. 2010b; Halogeometricum rufum sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halogeometricum . Int J Syst Evol Microbiol 60:2613–2617 [View Article][PubMed]
    [Google Scholar]
  9. Cui H. L., Yang X., Gao X., Xu X. W. 2011; Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum . Int J Syst Evol Microbiol 61:911–915 [View Article][PubMed]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  11. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  14. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  15. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Class III. Halobacteria . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 p. 294 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  16. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  17. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A. 2008; Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884 [View Article][PubMed]
    [Google Scholar]
  18. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  19. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  20. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  21. LoBasso S., Lopalco P., Mascolo G., Corcelli A. 2008; Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi . Archaea 2:177–183 [View Article][PubMed]
    [Google Scholar]
  22. McDade J. J., Weaver R. H. 1959; Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64[PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  24. Montalvo-Rodríguez R., Vreeland R. H., Oren A., Kessel M., Betancourt C., López-Garriga J. 1998; Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312 [View Article][PubMed]
    [Google Scholar]
  25. Namwong S., Tanasupawat S., Visessanguan W., Kudo T., Itoh T. 2007; Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 57:2199–2203 [View Article][PubMed]
    [Google Scholar]
  26. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S. 1995; Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . In Archaea: a Laboratory Manual: Halophiles pp. 179–180 Edited by DasSarma S., Fleischmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Oren A. 2002; Solar Salterns. In Halophilic Microbioorganisms and their Environments pp. 441–469 Dordrecht: Kluwer Acdemic Pulishers;
    [Google Scholar]
  28. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  29. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59:637–642 [View Article][PubMed]
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  31. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. 2008; Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860 [View Article][PubMed]
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  33. Vreeland R. H., Straight S., Krammes J., Dougherty K., Rosenzweig W. D., Kamekura M. 2002; Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452 [View Article][PubMed]
    [Google Scholar]
  34. Wainø M., Tindall B. J., Ingvorsen K. 2000; Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190 [View Article][PubMed]
    [Google Scholar]
  35. Walsby A. E. 1980; A square bacterium. Nature 283:69–71 [View Article]
    [Google Scholar]
  36. Yang Y., Cui H.-L., Zhou P.-J., Liu S.-J. 2007; Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 57:103–106 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025841-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025841-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error