1887

Abstract

Six isolates of a facultatively anaerobic bacterium were recovered in culture from marine invertebrates and vertebrates, including packhorse lobster (), abalone ( sp.) and Atlantic salmon (), between 1994 and 2002. The bacteria were Gram-negative, rod-shaped and motile by means of more than one polar flagellum, oxidase-positive, catalase-positive and able to grow in the presence of 0.5–8.0 % NaCl (optimum 3.0–6.0 %) and at 10–37 °C (optimum 25–30 °C). On the basis of 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA) using five loci (2443 bp; , , , and ), the closest phylogenetic neighbours of strain TCFB 0772 were the type strains of (99.8 and 94.6 % similarity, respectively), (99.8 and 94.1 %), (99.4 and 88.8 %), (99.4 and 90.3 %), (99.2 and 94.4 %), (99.1 and 89.3 %) and (99.1 and 92.3 %). DNA–DNA hybridization confirmed that the six isolates constitute a unique taxon that is distinct from other known species of . In addition, this taxon can be readily differentiated phenotypically from other species. The six isolates therefore represent a novel species, for which the name sp. nov. is proposed; the novel species is represented by the type strain TCFB 0772 ( = JCM 16453  = LMG 25398) (DNA G+C content 45.9 mol%) and reference strains TCFB 1977 ( = JCM 16454) and TCFB 1000 ( = JCM 16455).

Funding
This study was supported by the:
  • Institute for Fermentation, Osaka, Japan
  • Fisheries Research and Development Corporation, Canberra, Australia
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025916-0
2012-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1864.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025916-0&mimeType=html&fmt=ahah

References

  1. Austin B., Austin D. A. 1999 Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 3rd edn. Berlin: Springer;
    [Google Scholar]
  2. Barnes E. M., Melton W. 1971; Extracellular enzymic activity of poultry spoilage bacteria. J Appl Bacteriol 34:599–609 [View Article][PubMed]
    [Google Scholar]
  3. Bryant T. N. 1991; Software for the development and evaluation of probabilistic identification matrices. Comput Appl Biosci 7:189–193[PubMed]
    [Google Scholar]
  4. Bryant T. N. 2004; PIBWin – software for probabilistic identification. J Appl Microbiol 97:1326–1327 [View Article][PubMed]
    [Google Scholar]
  5. Cano-Gómez A., Goulden E. F., Owens L., Høj L. 2010; Vibrio owensii sp. nov., isolated from cultured crustaceans in Australia. FEMS Microbiol Lett 302:175–181 [View Article][PubMed]
    [Google Scholar]
  6. Carson J., Higgins M. J., Wilson T. K., Gudkovs N., Bryant T. N. 2006 Aquatic Animal Health Subprogram Vibrios of Aquatic Animals: Development of a National Standard Diagnostic Technology Final Report. Project 01/628 Hobart: Fisheries Research & Development Corporation;
    [Google Scholar]
  7. Chester B., Moskowitz L. B. 1987; Rapid catalase supplemental test for identification of members of the family Enterobacteriaceae . J Clin Microbiol 25:439–441[PubMed]
    [Google Scholar]
  8. Chimetto L. A., Cleenwerck I., Alves N. Jr, Silva B. S., Brocchi M., Willems A., De Vos P., Thompson F. L. 2011; Vibrio communis sp. nov., isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei . Int J Syst Evol Microbiol 61:362–368 [View Article][PubMed]
    [Google Scholar]
  9. Cowan S. T. 1974 Manual for the Identification of Medical Bacteria, 2nd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Diggles B. K., Moss G. A., Carson J., Anderson C. D. 2000; Luminous vibriosis in rock lobster Jasus verreauxi (Decapoda: Palinuridae) phyllosoma larvae associated with infection by Vibrio harveyi . Dis Aquat Organ 43:127–137 [View Article][PubMed]
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S. L., Miura H., Matsui K., Yabuuchi E. 1988; Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26:1708–1713[PubMed]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  13. Farmer J. J. III, Janda J. M., Brenner F. W., Cameron D. N., Birkhead K. M. 2005; Genus Vibrio . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2B pp. 494–546 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  15. Fukui Y., Sawabe T. 2007; Improved one-step colony PCR detection of Vibrio harveyi . Microbes Environ 22:1–10 [View Article]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–147 Edited by Stackebrandt E., Goodfellow M. New York: John Wiley;
    [Google Scholar]
  18. Lee J. V., Donovan T. J., Furniss A. L. 1978; Characterization, taxonomy, and emended description of Vibrio metschnikovii . Int J Syst Bacteriol 28:99–111 [View Article]
    [Google Scholar]
  19. MacFaddin J. F. 2000 Biochemical Tests for Identification of Medical Bacteria, 3rd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  21. Nishino T., Ikemoto E., Kogure K. 2004; Application of atomic force microscopy to observation of marine bacteria. J Oceanogr 60:219–225 [View Article]
    [Google Scholar]
  22. Owens L., Busico-Salcedo M. 2006; Vibrio harveyi: pretty problems in paradise. In The Biology of Vibrios pp. 266–280 Edited by Thompson F. L., Austin B., Swings J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  24. Sawabe T., Kita-Tsukamoto K., Thompson F. L. 2007; Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932–7936 [View Article][PubMed]
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  28. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [View Article][PubMed]
    [Google Scholar]
  29. Thompson F. L., Gomez-Gil B., Vasconcelos A. T. R., Sawabe T. 2007; Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol 73:4279–4285 [View Article][PubMed]
    [Google Scholar]
  30. Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V. 2007; Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov.. Int J Syst Evol Microbiol 57:2823–2829 [View Article][PubMed]
    [Google Scholar]
  31. Waller J. R., Hodel S. L., Nuti R. N. 1985; Improvement of two toluidine blue O-mediated techniques for DNase detection. J Clin Microbiol 21:195–199[PubMed]
    [Google Scholar]
  32. Willcox W. R., Lapage S. P., Bascomb S., Curtis M. A. 1973; Identification of bacteria by computer: theory and programming. J Gen Microbiol 77:317–330[PubMed] [CrossRef]
    [Google Scholar]
  33. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  34. Yoshizawa S., Wada M., Kita-Tsukamoto K., Ikemoto E., Yokota A., Kogure K. 2009; Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59:1645–1649 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025916-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025916-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error