1887

Abstract

A novel Gram-positive, anaerobic and thermophilic bacterium, strain MET79, was isolated from an oil well located in the Gulf of Mexico. Cells were straight rods, motile by a subpolar flagellum. Spores were formed in old cultures. Inner gas vacuoles swelled the cells when exposed to air. The optimum growth conditions were 55 °C, pH 7·5 and 1 % NaCl. Yeast extract was required for growth. Strain MET79 fermented several sugars, some organic acids and Casamino acids. Glucose was fermented into lactate, acetate, butyrate, H and CO. Strain MET79 reduced thiosulfate to hydrogen sulfide and nitrate to ammonium. The DNA G+C content was 30·9 mol%. The closest phylogenetic relative of strain MET79 was (88·7 % 16S rDNA sequence similarity). As strain MET79 (=DSM 15102=CIP 107615) was physiologically and phylogenetically different from its closest relatives, it is assigned as the type strain of a novel species of a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02662-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531509.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02662-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum R. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  4. Bozzola J. J., Russell L. D. 1991; Electron microscopy. In Principles and Techniques for Biologists pp 40–61 Boston: Jones & Bartlett;
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  6. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  7. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef]
    [Google Scholar]
  8. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 2000; Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Gevertz D., Telang A. J., Voordouw G., Jenneman G. E. 2000; Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501 [CrossRef]
    [Google Scholar]
  11. Greene A. C., Patel B. K. C., Sheehy A. J. 1997; Deferribacter thermophilus gen. nov., sp. nov. a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509 [CrossRef]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  14. Huu N. B., Denner E. B. M., Ha D. T. C., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 211–232Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Koussémon M., Combet-Blanc Y., Patel B. K. C., Cayol J.-L., Thomas P., Garcia J.-L., Ollivier B. 2001; Propionibacterium microaerophilum sp. nov., a microaerophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 51:1373–1382
    [Google Scholar]
  17. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K. C., Fardeau M.-L., Thomas P., Crolet J.-L., Garcia J.-L. 1997; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824 [CrossRef]
    [Google Scholar]
  18. Magot M., Ollivier B., Patel B. K. C. 2000; Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116 [CrossRef]
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Lilburn T. G. 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Myhr S., Torsvik T. 2000; Denitrovibrio acetiphilus , a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int J Syst Evol Microbiol 50:1611–1619 [CrossRef]
    [Google Scholar]
  22. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995a; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314 [CrossRef]
    [Google Scholar]
  23. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J.-L., Fardeau M.-L., Garcia J.-L. 1995b; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales . Appl Environ Microbiol 61:2053–2055
    [Google Scholar]
  24. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 1999; Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147 [CrossRef]
    [Google Scholar]
  25. Rees G. N., Patel B. K. C., Grassia G. S., Sheehy A. J. 1997; Anaerobaculum thermoterrenum gen. nov. sp. nov. a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154 [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Telang A. J., Ebert S., Foght J. M., Westlake D. W. S., Jenneman G. E., Gevertz D., Voordouw G. 1997; Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793
    [Google Scholar]
  28. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. 1996; Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629
    [Google Scholar]
  29. Wery N., Moricet J.-M., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M.-A., Barbier G. 2001; Caloranaerobacter azorensis gen. nov., sp. nov. an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796 [CrossRef]
    [Google Scholar]
  30. Winker S., Woese C. R. 1991; A definition of the domain Archaea , Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 13:161–165 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02662-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02662-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error