1887

Abstract

A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55–80 °C, with an optimum at 70 °C. The NaCl concentration range for growth was 10–35 g l, with an optimum at 25 g l. The pH range for growth was 6–6·7, with an optimum at approximately pH 6·25. H and CO were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812 were similar to those of , a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family (similarity values of less than 90 %). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812 could be distinguished from , the type species of the type genus of the family . Finally, the G+C content of the genomic DNA of strain CIR29812 (46·0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812 represents a novel species of a new genus, , of which is the type species. The type strain is CIR29812 (=DSM 15286=JCM 11887).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02669-0
2004-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540227.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02669-0&mimeType=html&fmt=ahah

References

  1. Boone D. R., Johnson R. L., Lui Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Widdel F. 1986; Respiratory quinones of sulfate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18 [CrossRef]
    [Google Scholar]
  4. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  5. Ferrante G., Ekiel I., Sprott G. D. 1987; Structures of diether lipids of Methanospirillum hungatei containing novel head groups N , N -dimethylamino- and N , N , N -trimethylaminopentanetetrol. Biochim Biophys Acta 921:281–291 [CrossRef]
    [Google Scholar]
  6. Ferrante G., Ekiel I., Patel G. B., Sprott D. 1988; Structure of the major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Biochim Biophys Acta 963:162–172 [CrossRef]
    [Google Scholar]
  7. Garrity G. M., Holt J. G. 2001; Phylum BIII. Thermodesulfobacteria phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  389–393 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  9. Henry E. A., Devereux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Remsen C. C., Mitchell R. 1994; Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii , gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69 [CrossRef]
    [Google Scholar]
  10. Hugenholtz P., Pitulle C., Herschberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  11. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  12. Judicial Commission of the International Committee on Systematics of Prokaryotes 2003; Valid publication of the genus name Thermodesulfobacterium and the species names Thermodesulfobacterium commune (Zeikus et al . 1983) and Thermodesulfobacterium thermophilum (ex Desulfovibrio thermophilus Rozanova and Khudyakova 1974). Opinion 71. Int J Syst Evol Microbiol 53:927 [CrossRef]
    [Google Scholar]
  13. Kashefi K., Holmes D. E., Reysenbach A. L., Lovley D. R. 2002; Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742 [CrossRef]
    [Google Scholar]
  14. Langworthy T. A., Hölzer G., Zeikus J. G., Tornabene T. G. 1983; Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune . Syst Appl Microbiol 4:3–17
    [Google Scholar]
  15. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Ollivier B., Cord-Ruwisch R., Hatchikian E. C., Garcia J. L. 1988; Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450 [CrossRef]
    [Google Scholar]
  18. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastdnaml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  19. Postgate J. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 14:481–482
    [Google Scholar]
  20. Rozanova E. P., Khudyakova A. I. 1974; A new non-spore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology (English translation of Mikrobiologiya ) 43908–912
    [Google Scholar]
  21. Rozanova E. P., Pivovarova T. A. 1988; Reclassification of Desulfovibrio thermophilus (Rozanova & Khudyakova 1974). Microbiology (English translation of Mikrobiologiya ) 57102–106
    [Google Scholar]
  22. Skirnisdottir S., Hreggvidsson G. O., Hjorleifsdottir S., Marteinsson V. T., Petursdottir S. K., Holst O., Kristjansson J. K. 2000; Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841 [CrossRef]
    [Google Scholar]
  23. Sonne-Hansen J., Ahring B. K. 1999; Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564 [CrossRef]
    [Google Scholar]
  24. Stöhr R., Waberski A., Völker H., Tindall B. J., Thomm M. 2001; Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘ Hydrogenobacter / Aquifex ’. Int J Syst Evol Microbiol 51:1853–1862 [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  26. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  28. Van Dover C. L., Humphris S. E., Fornari D. 24 other authors 2001; Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823 [CrossRef]
    [Google Scholar]
  29. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  30. Yoshino J., Sugiyama Y., Sakuda S., Kodama T., Nagasawa H., Ishii M., Igarashi Y. 2001; Chemical structure of a novel aminophospholipid from Hydrogenobacter thermophilus strain TK-6. J Bacteriol 183:6302–6304 [CrossRef]
    [Google Scholar]
  31. Zeikus J. G., Dawson M. A., Thompson T. E., Ingvorsen K., Hatchikian E. C. 1983; Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov.. J Gen Microbiol 129:1159–1169
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02669-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02669-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error