1887

Abstract

Two strains of thermophilic, anaerobic, chemolithoautotrophic bacteria, designated JR and DR, were isolated from hydrothermal samples collected on the Mid-Atlantic Ridge from the Rainbow (36° 16′ N, 33° 54′ W) and Menez Gwen (37° 50′ N, 31° 50′ W) vent fields, respectively. Cells of both isolates were short, straight- to vibrio-shaped, motile rods with one polar flagellum, and were Gram-negative and non-sporulating. Strain JR was characterized in detail. It was found to grow optimally at pH 6·5–6·7, at 60 °C and in the presence of 30 g NaCl l. Strain JR could use molecular hydrogen, acetate, succinate, pyruvate and proteinaceous compounds as electron donors, and elemental sulfur, nitrate or Fe(III) as electron acceptors. No fermentation of organic substrates occurred. The G+C content of the DNA of strain JR was 30·8 mol%. Strain DR (=DSM 14927) possessed the same morphology and pH, temperature and salinity optima and ranges, and used the same electron acceptors as strain JR. On the basis of their 16S rDNA sequences (1517 nucleotides), strains JR and DR were identical and distantly related to and (95·3 and 95·2 % sequence similarity, respectively). Based on their phenotypic and phylogenetic characteristics, it is proposed that both strains are members of a new species of the genus , for which the name (type strain JR=DSM 14873=JCM 11955) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02673-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531637.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02673-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguénès G., Cueff V., Cambon-Bonavita M.-A. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  4. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  5. Garrity G. M., Holt J. M. 2001; Phylum BIX. Deferribacteres phy. nov. In Bergey ' s Manual of Systematic Bacteriology . , 2nd edn. vol 1p– 465Edited by Boone D. R., Castenholz R. W. New York: Springer;
  6. Götz D., Banta A., Beveridge T. G., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov. two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  7. Greene A. C., Patel B. K. C., Sheehy A. J. 1997; Deferribacter thermophilus gen. nov., sp. nov. a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509 [CrossRef]
    [Google Scholar]
  8. Huber H., Stetter K. O. 2002; Family I. Deferribacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp 465–466Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  9. Huber H., Diller S., Horn C., Rachel R. 2002; Thermovibrio ruber gen. nov., sp. nov. an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae . Int J Syst Evol Microbiol 521859–1865 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kashefi K., Tor J. M., Holmes D. E., Gaw Van Praagh C. V., Reysenbach A.-L., Lovley D. R. 2002; Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728 [CrossRef]
    [Google Scholar]
  12. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  13. Miroshnichenko M. L., Gongadze G. A., Lysenko A. M., Bonch-Osmolovskaya E. A. 1994; Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 161:88–93
    [Google Scholar]
  14. Miroshnichenko M. L., L'Haridon S., Jeanthon C.7 other authors 2003a; Oceanithermus profundus gen. nov., sp. nov. a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752 [CrossRef]
    [Google Scholar]
  15. Miroshnichenko M. L., L'Haridon S., Nercessian O.8 other authors 2003b; Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148 [CrossRef]
    [Google Scholar]
  16. Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Pimenov N. V., Tourova T. P., Antipov A. N., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A. 2003c; Caldithrix abyssi gen. nov. sp. nov. a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329 [CrossRef]
    [Google Scholar]
  17. Rainey F. A., Weiss N., Stackebrandt E. 1995; Phylogenetic analysis of the genera Cellulomonas , Promicromonospora , and Jonesia and proposal to exclude the genus Jonesia from the family Cellulomonadaceae . Int J Syst Bacteriol 45:649–652 [CrossRef]
    [Google Scholar]
  18. Reysenbach A.-L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  19. Slobodkin A., Campbell B., Cary S. C., Bonch-Osmolovskaya E., Jeanthon C. 2001; Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13° N (East Pacific Rise. FEMS Microbiol Ecol 36:235–243
    [Google Scholar]
  20. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [CrossRef]
    [Google Scholar]
  21. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846 [CrossRef]
    [Google Scholar]
  22. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae . I. Quantitative measurements on growing cells of Chromatium okenii . J Microbiol Serol 30:225–232
    [Google Scholar]
  23. Widdel F., Pfennig N. 1992; The genus Desulfuromonas and other gram-negative sulfur-reducing eubacteria. In The Prokaryotes , 2nd edn. vol 1 pp 3379–3389Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  24. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02673-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02673-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error