1887

Abstract

A Gram-positive, spore-forming, syntrophic propionate-oxidizing bacterium, sp. nov. strain HH, was isolated as a co-culture with JF-1 from anaerobic, freeze-dried granular sludge obtained from an upflow anaerobic sludge bed reactor treating sugar beet wastewater. The bacterium converted propionate to acetate in co-culture with JF-1 or MF, but not in co-culture with AZ. The organism could not be cultured axenically with any of the substrates tested and therefore can be considered as a (the first) true anaerobic syntrophic bacterium. The bacterium contained two distinct 16S rRNA gene sequences, with 96·8 % sequence similarity, which were both expressed during syntrophic growth on propionate as revealed by fluorescent hybridization. The most closely related organisms are LR7.2, a bacterium that transforms phenol into benzoate, and SI, a thermophilic, syntrophic propionate-oxidizing bacterium. Other related species belong to the Gram-positive, sulfate-reducing genus . The type strain of is strain HH (=ATCC BAA-615=DSM 15200).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02880-0
2005-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551697.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02880-0&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1996; In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual pp. 3.3.6.1–3.3.6.15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  2. Bryant M. P. 1976; The microbiology of anaerobic digestion and methanogenesis with special reference to sewage. In Microbial Energy Conversion pp  107–118 Edited by Schlegel H. G., Barnes J. Göttingen: E. Goltze K.G;
    [Google Scholar]
  3. Church G. M., Gilbert W. 1984; Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995 [CrossRef]
    [Google Scholar]
  4. de Bok F. A. M., Stams A. J. M., Dijkema C., Boone D. R. 2001; Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei . Appl Environ Microbiol 67:1800–1804 [CrossRef]
    [Google Scholar]
  5. de Bok F. A. M., Plugge C. M., Stams A. J. M. 2004; Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375 [CrossRef]
    [Google Scholar]
  6. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240
    [Google Scholar]
  7. Harmsen H. J. M., Kengen K. M. P., Akkermans A. D. L., Stams A. J. M. 1995; Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst Appl Microbiol 18:67–73 [CrossRef]
    [Google Scholar]
  8. Harmsen H. J. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M., de Vos W. M. 1996; Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl Environ Microbiol 62:1656–1663
    [Google Scholar]
  9. Houwen F. P., Plokker J., Stams A. J. M., Zehnder A. J. B. 1990; Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii . Arch Microbiol 155:52–55 [CrossRef]
    [Google Scholar]
  10. Houwen F. P., Dijkema C., Stams A. J. M., Zehnder A. J. B. 1991; Propionate metabolism in anaerobic bacteria; determination of carboxylation reactions with 13C-NMR spectroscopy. Biochim Biophys Acta 1056:126–132 [CrossRef]
    [Google Scholar]
  11. Imachi H., Sekiguchi Y., Kamagata Y., Ohashi A., Harada H. 2000; Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615 [CrossRef]
    [Google Scholar]
  12. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  13. Juteau P., Côté V., Duckett M.-F., Beaudet R., Lépine F., Villemur R., Bisaillon J.-G. 2005; Cryptanaerobacter phenolicus gen. nov., sp. nov. anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55:245–250 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  15. Liu Y. T., Balkwill D. L., Aldrich H. C., Drake G. R., Boone D. R. 1999; Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen.nov., sp. nov. and Syntrophobacter wolinii . Int J Syst Bacteriol 49:545–556 [CrossRef]
    [Google Scholar]
  16. Lueders T., Pommerenke B., Friedrich M. W. 2004; Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786 [CrossRef]
    [Google Scholar]
  17. Nubel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    [Google Scholar]
  18. Plugge C. M., Dijkema C., Stams A. J. M. 1993; Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76 [CrossRef]
    [Google Scholar]
  19. Plugge C. M., Balk M., Stams A. J. M. 2002; Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399
    [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  21. Satokari R. M., Vaughan E. E., Akkermans A. D. L., Saarela M., de Vos W. M. 2001; Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513 [CrossRef]
    [Google Scholar]
  22. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  23. Schink B., Stams A. J. M. 2002; Syntrophism among prokaryotes. In The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community , release 3.8 Edited by Dworkin M., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  24. Shimizu T., Ohshima S., Ohtani K., Hoshino K., Honjo K., Hayashi H., Shimizu T. 2001; Sequence heterogeneity of the ten rRNA operons in Clostridium perfringens . Syst Appl Microbiol 24:149–156 [CrossRef]
    [Google Scholar]
  25. Strunk O., Ludwig W. 1995 arb – a software environment for sequence data Department of Microbiology, Technical University of Munich; Munich, Germany:
    [Google Scholar]
  26. Wallrabenstein C., Hauschild E., Schink B. 1995; Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352 [CrossRef]
    [Google Scholar]
  27. Wu W.-M., Jain M. K., De Macario E. C., Thiele J. H., Zeikus J. G. 1992; Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biotechnol 38:282–290 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02880-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02880-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error