1887

Abstract

A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY, was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l. Strain TY produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C DMA (18.7 %), C (15.4 %), anteiso-C (15.2 %), C (13.3 %) and summed feature 5 (Cω7 and/or C) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY represented a novel species of the genus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY is proposed to represent a novel species, named sp. nov. (type strain TY  = JCM 17499  = DSM 24661).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30970002)
  • National Science & Technology Major Project (Award 2008ZX07101-006-3)
  • Environmental Science Research & Design Institute of Zhejiang Province
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032144-0
2012-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2145.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032144-0&mimeType=html&fmt=ahah

References

  1. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  2. Chung A. P., Rainey F. A., Valente M., Nobre M. F., da Costa M. S. 2000; Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217 [View Article][PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  4. Dong X. Z., Cai M. Y. 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp. 370–398 Edited by Dong X. Z., Cai M. Y. Beijing: Science Press; (in Chinese)
    [Google Scholar]
  5. Ducros V., Ruffieux D., Belva-Besnet H., de Fraipont F., Berger F., Favier A. 2009; Determination of dansylated polyamines in red blood cells by liquid chromatography-tandem mass spectrometry. Anal Biochem 390:46–51 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Ferraz A. S., Carreto L., Tenreiro S., Nobre M. F., da Costa M. S. 1994; Polar lipids and fatty acid composition of Thermus strains from New Zealand. Antonie van Leeuwenhoek 66:357–363 [View Article][PubMed]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Gonzalez J. M., Jurado V., Laiz L., Zimmermann J., Hermosin B., Saiz-Jimenez C. 2004; Pectinatus portalensis nov. sp., a relatively fast-growing, coccoidal, novel Pectinatus species isolated from a wastewater treatment plant. Antonie van Leeuwenhoek 86:241–247 [View Article][PubMed]
    [Google Scholar]
  10. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  11. Juvonen R., Suihko M. L. 2006; Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus . Int J Syst Evol Microbiol 56:695–702 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  14. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  15. Lee S. Y., Mabee M. S., Jangaard N. O. 1978; Pectinatus, a new genus of the family Bacteroidaceae . Int J Syst Bacteriol 28:582–594 [View Article]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  17. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [View Article][PubMed]
    [Google Scholar]
  18. Rajakylä E. 1981; Separation and determination of some organic acids and their sodium salts by high-performance liquid chromatography. J Chromatogr A 218:695–701 [View Article]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Schleifer K. H., Leuteritz M., Weiss N., Ludwig W., Kirchhof G., Seidel-Rüfer H. 1990; Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov.. Int J Syst Bacteriol 40:19–27 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  22. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  23. Vereecke C., Arahal D. R. 2008; The status of the species Pectinatus portalensis Gonzalez et al. 2005. Request for an Opinion. Int J Syst Evol Microbiol 58:1507 [View Article][PubMed]
    [Google Scholar]
  24. Wu X. Y., Zheng G., Zhang W. W., Xu X. W., Wu M., Zhu X. F. 2010; Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 60:2540–2543 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032144-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032144-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error