1887

Abstract

Gram-negative, rod-shaped bacteria were isolated from root nodules of , and . Based on the 16S rRNA gene phylogeny, they were closely related to species (100–97 % similarity), belonging to the class , family . The closest relatives of LMG 26383, LMG 26379 and LMG 26381 were respectively the type strains of (99.6 %), (98.3 %) and (99.0 %). Chemotaxonomic data, including major fatty acid profiles, supported the assignment of our strains to the genus . Analysis of the concatenated sequences of five housekeeping genes (, , , and ) and the results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from each other and from the five species with validly published names. No or genes could be amplified, while PCR gave non-specific products. On the basis of genotypic and phenotypic data, three novel species, sp. nov. (type strain LMG 26383  = CCUG 61248  = R-45681), sp. nov. (type strain LMG 26379  = CCUG 61247  = R-46060) and sp. nov. (type strain LMG 26381  = CCUG 61249  = R-46070), are proposed.

Funding
This study was supported by the:
  • Special Research Fund (BOF)-UGent (Award BOF 01J04807)
  • Foundation for Scientific Research (FWO)-Flanders (Award FWO G.0058.07N)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035477-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2505.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035477-0&mimeType=html&fmt=ahah

References

  1. Baele M., Baele P., Vaneechoutte M., Storms V., Butaye P., Devriese L. A., Verschraegen G., Gillis M., Haesebrouck F. 2000; Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol 38:4201–4207[PubMed]
    [Google Scholar]
  2. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  3. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E. 1996; Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987 [View Article][PubMed]
    [Google Scholar]
  4. De Meyer S. E., Van Hoorde K., Vekeman B., Braeckman T., Willems A. 2011; Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43:2384–2396 [View Article]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  6. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  7. Haukka K., Lindström K., Young J. P. W. 1998; Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426[PubMed]
    [Google Scholar]
  8. Khamis A., Colson P., Raoult D., Scola B. L. 2003; Usefulness of rpoB gene sequencing for identification of Afipia and Bosea species, including a strategy for choosing discriminative partial sequences. Appl Environ Microbiol 69:6740–6749 [View Article][PubMed]
    [Google Scholar]
  9. La Scola B., Mallet M.-N., Grimont P. A. D., Raoult D. 2003; Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 53:15–20 [View Article][PubMed]
    [Google Scholar]
  10. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  11. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A. 2007; Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503 [View Article][PubMed]
    [Google Scholar]
  12. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214 [View Article][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  14. Ouattara A. S., Assih E. A., Thierry S., Cayol J.-L., Labat M., Monroy O., Macarie H. 2003; Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 53:1247–1251 [View Article][PubMed]
    [Google Scholar]
  15. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  17. Vancanneyt M., Mengaud J., Cleenwerck I., Vanhonacker K., Hoste B., Dawyndt P., Degivry M. C., Ringuet D., Janssens D., Swings J. 2004; Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol 54:551–556 [View Article][PubMed]
    [Google Scholar]
  18. Vincent J. M. 1970; A Manual for the Practical Study of the Root-Nodule Bacteria. International Biological Programme Handbook, vol. 15 Oxford: Blackwell Scientific;
    [Google Scholar]
  19. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Green Publishing and Wiley-Interscience;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035477-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035477-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error