1887

Abstract

A Gram-type positive, Gram-reaction variable, non-motile, psychrophilic actinobacterium, designated Cr8-25, was isolated from alpine glacier cryoconite and was able to grow well over a temperature range of 1–15 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Cr8-25 belonged to the family and showed highest 16S rRNA gene sequence similarity with 44C3 (97.0 %). However, strain Cr8-25 could be differentiated from the type strain of on the level of genomospecies by a DNA–DNA relatedness value of only 37.2 %. Strain Cr8-25 contained a cell-wall peptidoglycan that was cross-linked according to the B-type, which is based on 2,4-diaminobutyric acid. The cell wall contained the sugars galactose, fucose and rhamnose. The predominant cellular fatty acids of strain Cr8-25 were C anteiso (64.6 %) and iso-C (22.5 %) and the major menaquinones were MK-11 and MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and unknown glycolipids. The G+C content of the genomic DNA was 58.8 mol%. On the basis of the phenotypic characteristics, phylogenetic and chemotaxonomic analyses and DNA–DNA relatedness data, strain Cr8-25 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is Cr8-25 ( = DSM 23737 = LMG 26215).

Funding
This study was supported by the:
  • Aktion D. Swarovski & Co. 2009
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036160-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2724.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036160-0&mimeType=html&fmt=ahah

References

  1. An S.-Y., Xiao T., Yokota A. 2008; Schumannella luteola gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. . J Gen Appl Microbiol 54:253–258 [View Article][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim H. J., Lee K. H., Seong C. N. 2010; Chryseoglobus frigidaquae gen. nov., sp. nov., a novel member of the family Micro bacteriaceae. . Int J Syst Evol Microbiol 60:1311–1316[PubMed] [CrossRef]
    [Google Scholar]
  3. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. P., Gosink J. J., McCammon S. A., Lewis T. L., Nicols D. S., Nichols P. D., Skerrat J. H., Staley J. T., McMeekin T. A. 1998; Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:ω63). Int J Syst Bacteriol 48:1171–1180 [View Article]
    [Google Scholar]
  5. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  6. Cook D. M., Henriksen E. D., Rogers T. E., Peterson J. D. 2008; Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 58:2779–2782 [View Article][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  8. Evtushenko L. I., Takeuchi M. 2006; The family Microbacteriaceae . In The Prokaryotes; a Handbook on the Biology of Bacteria pp. 1020–1098 Edited by Dworkin S. M., Falkow E. R., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 2009 phylip (phylogeny inference package), version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Greene A. C., Euzéby J. P., Tindall B. J., Patel B. K. C. 2009; Proposal of Frondihabitans gen. nov. to replace the illegitimate genus name Frondicola Zhang et al. 2007. Int J Syst Evol Microbiol 59:447–448 [View Article][PubMed]
    [Google Scholar]
  12. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44:410–415 [View Article][PubMed]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  14. Kämpfer P., Rainey F. A., Andersson M. A. Q., Nurmiaho Lassila E.-L., Ulrych U., Busse H. J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. . Int J Syst Evol Microbiol 50:355–363 [View Article][PubMed]
    [Google Scholar]
  15. Kim S.-J., Lee S.-S. 2011; Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 61:155–159 [View Article][PubMed]
    [Google Scholar]
  16. Lee D. W., Lee J. M., Seo J. P., Schumann P., Kim S. J., Lee S. D. 2008; Phycicola gilvus gen. nov., sp. nov., an actinobacterium isolated from living seaweed. Int J Syst Evol Microbiol 58:1318–1323 [View Article][PubMed]
    [Google Scholar]
  17. Li H. R., Yu Y., Luo W., Zeng Y. X. 2010; Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. Int J Syst Evol Microbiol 60:2535–2539 [View Article][PubMed]
    [Google Scholar]
  18. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  19. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [View Article][PubMed]
    [Google Scholar]
  20. Margesin R., Schumann P., Zhang D.-C., Redzic M., Zhou Y.-G., Liu H.-C., Schinner F. 2012; Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:397–402 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  22. Park Y.-H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K. 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64:307–313 [View Article][PubMed]
    [Google Scholar]
  23. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7[PubMed]
    [Google Scholar]
  24. Sambrook J., Frisch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  26. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [View Article]
    [Google Scholar]
  27. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  28. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I. Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes 2009; Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. . Int J Syst Evol Microbiol 59:1823–1849 [View Article][PubMed]
    [Google Scholar]
  29. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  30. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1997; Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. Int J Syst Bacteriol 47:474–478 [View Article][PubMed]
    [Google Scholar]
  31. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:739–747 [View Article][PubMed]
    [Google Scholar]
  32. Takeuchi M., Weiss N., Schumann P., Yokota A. 1996; Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:967–971 [View Article][PubMed]
    [Google Scholar]
  33. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  36. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  37. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  38. Uchida K., Kudo T., Suzuki K. I., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [View Article][PubMed]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  40. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A. 1985; Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr A 347:109–120 [View Article][PubMed]
    [Google Scholar]
  41. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989; Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178
    [Google Scholar]
  42. Zhang D.-C., Schinner F., Margesin R. 2010; Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2592–2595 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036160-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036160-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error