1887

Abstract

A taxonomic study was carried out on strain P1, which was isolated from mangrove sediment samples collected from Qinglan Port (Hainan, China). Cells were curved rods, that were motile, with a single polar flagellum. The strain was non-spore-forming with a cell size of 0.6×1.5–2.2 µm. Catalase and oxidase activities were not detected. Growth was observed in the temperature range 22–44 °C (optimum, 35–40 °C) and pH range 5.5–8.5 (optimum, pH 7.0). NaCl was required for growth and tolerated at up to 3.5 % (w/v) (optimum, 0.5 %). Strain P1 utilized hydrogen, succinate, -malate, citrate, oxalate, -lactate, pyruvate, or cysteine as electron donors, and sulfate or sulfite as electron acceptors. Fermentation products from pyruvate were acetate, H and CO. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain P1 formed a distinct evolutionary lineage within the family . Strain P1 was most closely related to members of the genera (92.0–94.3 % 16S rRNA gene sequence similarity), (91.1 %), (87.9 %) and (86.0 %) of the family . The DNA G+C content of strain P1 was 64.5 mol% and the major cellular fatty acids were iso-C (18.8 %), anteiso-C (5.0 %), C (14.2 %) and iso-Cω9 (24.4 %). The predominant menaquinone was MK-7 (97 %). Major polar lipids were phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Strain P1 was distinguishable from members of phylogenetically related genera by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain P1 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is P1 ( = CGMCC 1.5166 = DSM 24233).

Funding
This study was supported by the:
  • Marine Scientific Research Foundation for Public Sector Program (Award 201105027 and 200805050)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036632-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1570.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036632-0&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M. 1996 Computer science monographs, no. 28. MOLPHY Version 2.3. – Programs for molecular phylogenetics based on maximum likelihood Tokyo: Institute of Statistical Mathematics;
    [Google Scholar]
  2. Badziong W., Thauer R. K., Zeikus J. G. 1978; Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49 [View Article][PubMed]
    [Google Scholar]
  3. Baron E. J., Summanen P., Downes J., Roberts M. C., Wexler H., Finegold S. M. 1989; Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 135:3405–3411[PubMed]
    [Google Scholar]
  4. Chang B. V., Lu Z. J., Yuan S. Y. 2009; Anaerobic degradation of nonylphenol in subtropical mangrove sediments. J Hazard Mater 165:162–167 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Weddel F. 1986; Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18 [View Article]
    [Google Scholar]
  7. Cowan S. T., Steel K. J. 1993 Manual for the Identification of Medical Bacteria, 3rd edn. Edited by Barrow G. I., Feltham R. K. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  8. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619[PubMed]
    [Google Scholar]
  9. Dittmer J. C., Lester R. L. 1964; A simple specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127[PubMed]
    [Google Scholar]
  10. Dzierzewicz Z., Cwalina B., Kurkiewicz S., Chodurek E., Wilczok T. 1996; Intraspecies variability of cellular fatty acids among soil and intestinal strains of Desulfovibrio desulfuricans . Appl Environ Microbiol 62:3360–3365[PubMed]
    [Google Scholar]
  11. Gebhart C. J., Barns S. M., McOrist S., Lin G. F., Lawson G. H. 1993; Ileal symbiont intracellularis, an obligate intracellular bacterium of porcine intestines showing a relationship to Desulfovibrio species. Int J Syst Bacteriol 43:533–538 [View Article][PubMed]
    [Google Scholar]
  12. Hasegawa M., Kishino H. 1994; Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145
    [Google Scholar]
  13. Karkhoff-Schweizer R. R., Huber D. P. W., Voordouw G. 1995; Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol 61:290–296[PubMed]
    [Google Scholar]
  14. Klouche N., Basso O., Lascourrèges J. F., Cayol J. L., Thomas P., Fauque G., Fardeau M. L., Magot M. 2009; Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 59:3100–3104 [View Article][PubMed]
    [Google Scholar]
  15. Kohring L. L., Ringelberg D. B., Devereux R., Stahl D. A., Mittelman M. W., White D. C. 1994; Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308 [View Article][PubMed]
    [Google Scholar]
  16. Kuever J., Rainey F. A., Widdel F. . 2005; Family I. Desulfovibrionaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria) part C (The Alpha-, Beta-, Delta- and Epsilonproteobacteria) pp. 926–943 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  17. Li M. S., Lee S. Y. 1997; Mangroves of China: a brief review. For Ecol Manage 96:241–259 [View Article]
    [Google Scholar]
  18. Liao Q. Y., Li J., Zhang J. H., Li M., Lu Y., Xu R. L. 2009; An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Eur J Soil Biol 45:214–219 [View Article]
    [Google Scholar]
  19. Makula R. A., Finnerty W. R. 1974; Phospholipid composition of Desulfovibrio species. J Bacteriol 120:1279–1283[PubMed]
    [Google Scholar]
  20. McOrist S., Gebhart C. J., Boid R., Barns S. M. 1995; Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol 45:820–825 [View Article][PubMed]
    [Google Scholar]
  21. McOrist A. L., Warhurst M., McOrist S., Bird A. R. 2001; Colonic infection by Bilophila wadsworthia in pigs. J Clin Microbiol 39:1577–1579 [View Article][PubMed]
    [Google Scholar]
  22. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [View Article][PubMed]
    [Google Scholar]
  23. Ollivier B., Caumette P., Garcia J. L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38[PubMed]
    [Google Scholar]
  24. Peck H. D. Jr 1993; Bioenergetic strategies of the sulfate-reducing bacteria. In The Sulfate-Reducing Bacteria: Contemporary Perspectives pp. 41–76 Edited by Odom J. M., Singleton R. Jr New York: Springer; [View Article]
    [Google Scholar]
  25. Postgate J. R., Campbell L. L. 1966; Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738[PubMed]
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc..
    [Google Scholar]
  27. Syn C. K., Swarup S. 2000; A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem 278:86–90 [View Article][PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  29. Taylor J., Parkes R. J. 1983; The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans . J Gen Microbiol 129:3303–3309
    [Google Scholar]
  30. Tsu I. H., Huang C. Y., Garcia J. L., Patel B. K. C., Cayol J. L., Baresi L., Mah R. A. 1998; Isolation and characterization of Desulfovibrio senezii sp. nov., A halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species. Arch Microbiol 170:313–317 [View Article][PubMed]
    [Google Scholar]
  31. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566 [View Article]
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  33. Widdel F., Hansen T. A. Jr 1992; The dissimilatory sulfate and sulfur-reducing bacteria. In The Prokaryotes pp. 583–624 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  34. Yassin A. F., Haggenel B., Budzikiewicz H., Schaal K. P. 1993; Fatty acid and polar lipid composition of the genus Amycolatopsis: application of fast atom Bombardment-Mass Spectrometry to structure analysis of underivatized phospholipids. Int J Syst Bacteriol 43:414–420 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036632-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036632-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error