1887

Abstract

A moderately thermophilic, anaerobic, dissimilatory iron(III)-reducing bacterium (strain S3R1) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Centre in the Pacific Ocean at a depth of about 2150 m. Cells of strain S3R1 were ovals to short rods with a single polar flagellum, Gram-stain-negative, 0.5–0.6 µm in diameter and 0.8–1.3 µm long, growing singly or in pairs. The temperature range for growth was 36–62 °C, with an optimum at 50 °C. The pH range for growth was 5.5–7.5, with an optimum at pH 6.5. Growth of strain S3R1 was observed at NaCl concentrations ranging from 1.0 to 5.0 % (w/v), with an optimum at 2.0–2.5 % (w/v). The isolate used acetate, fumarate, malate, maleinate, succinate, propanol, palmitate, stearate, peptone and yeast extract as electron donors for growth and iron(III) reduction. All electron donors were oxidized completely to CO and HO. Iron(III) (in the form of ferrihydrite, ferric citrate or ferric nitrilotriacetate) and elemental sulfur (S) were the electron acceptors that supported growth. The DNA G+C content was 64.4 mol%. Results of 16S rRNA gene sequence analysis showed that the novel bacterium was related to representatives of the orders and with 84–86 % sequence similarity and formed a distinct phylogenetic branch in the On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the new isolate represents the sole species of a novel genus, gen. nov., sp. nov. The type strain of is S3R1 ( = DSM 24185  = VKM B-2672).

Funding
This study was supported by the:
  • Russian Foundation for Basic Research (Award 09-04-00251-a)
  • Programs ‘Molecular and Cell Biology’ and ‘The Origin and Evolution of the Biosphere’ of the Russian Academy of Sciences
  • United States National Science Foundation (Award OCE-0937404 and OCE-0728391)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038372-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2463.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038372-0&mimeType=html&fmt=ahah

References

  1. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336 [View Article][PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch Microbiol 164:406–413 [View Article][PubMed]
    [Google Scholar]
  4. Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M. 2006; Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742 [View Article][PubMed]
    [Google Scholar]
  5. DeSantis T. Z. Jr, Hugenholtz P., Keller K., Brodie E. L., Larsen N., Piceno Y. M., Phan R., Andersen G. L. 2006a; nast: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399 [View Article][PubMed]
    [Google Scholar]
  6. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. 2006b; Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb.. Appl Environ Microbiol 72:5069–5072 [View Article][PubMed]
    [Google Scholar]
  7. Greene A. C., Patel B. K. C., Yacob Sh. 2009; Geoalkalibacter subterraneus sp. nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. . Int J Syst Evol Microbiol 59:781–785 [View Article][PubMed]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Kashefi K., Tor J. M., Holmes D. E., Gaw Van Praagh C. V., Reysenbach A.-L., Lovley D. R. 2002; Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728 [View Article][PubMed]
    [Google Scholar]
  10. Kashefi K., Holmes D. E., Baross J. A., Lovley D. R. 2003; Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993 [View Article][PubMed]
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Lovley D. R., Holmes D. E., Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286 [View Article][PubMed]
    [Google Scholar]
  13. Miroshnichenko M. L., Slobodkin A. I., Kostrikina N. A., L’Haridon S., Nercessian O., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A., Jeanthon C. 2003; Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641 [View Article][PubMed]
    [Google Scholar]
  14. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89 [View Article]
    [Google Scholar]
  15. Reysenbach A.-L., Liu Y., Banta A. B., Beveridge T. J., Kirshtein J. D., Schouten S., Tivey M. K., Von Damm K. L., Voytek M. A. 2006; A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447[PubMed] [CrossRef]
    [Google Scholar]
  16. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids . MIDI Technical Note 101. Newark, DE: MIDI Inc.
    [Google Scholar]
  17. Slobodkin A. I. 2005; Thermophilic microbial metal reduction. Microbiology (English translation of Mikrobiologiia) 74:501–514
    [Google Scholar]
  18. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  19. Slobodkin A., Campbell B., Cary S. C., Bonch-Osmolovskaya E. A., Jeanthon C. 2001; Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13° N (East Pacific Rise). FEMS Microbiol Ecol 36:235–243[PubMed]
    [Google Scholar]
  20. Slobodkina G. B., Kolganova T. V., Chernyh N. A., Querellou J., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2009a; Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:1508–1512 [View Article][PubMed]
    [Google Scholar]
  21. Slobodkina G. B., Kolganova T. V., Querellou J., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2009b; Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:2880–2883 [View Article][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  23. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238[PubMed] [CrossRef]
    [Google Scholar]
  24. Ver Eecke H. C., Kelley D. S., Holden J. F. 2009; Abundances of hyperthermophilic autotrophic Fe(III) oxide reducers and heterotrophs in hydrothermal sulfide chimneys of the northeastern Pacific Ocean. Appl Environ Microbiol 75:242–245 [View Article][PubMed]
    [Google Scholar]
  25. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038372-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038372-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error