1887

Abstract

16S rRNA gene sequence information has indicated that has a close relationship with the genus . To clarify the taxonomic position of , we determined the sequence of as it represents an alternative phylogenetic marker for identification and classification of Gram-negative anaerobic rods. On the basis of sequences, was located within the genus , indicating that the species does not represent a distinct taxon at the genus level. Statistical tests (the Shimodaira–Hasegawa test and the approximately unbiased test) supported the finding that is monophyletic with members of the genus and thus belongs to the genus. On the basis of the phylogenetic findings, we propose that should be reclassified as comb. nov.; the type strain is KB3 ( = JCM 13648  = DSM 17970). An emended description of the genus is also provided.

Funding
This study was supported by the:
  • Institute for Fermentation, Osaka, Japan (Award 2009–2011)
  • Japan Society for the Promotion of Science (Award 23580126)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038638-0
2012-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2637.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038638-0&mimeType=html&fmt=ahah

References

  1. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  2. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  3. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  4. Kitahara M., Tsuchida S., Kawasumi K., Amao H., Sakamoto M., Benno Y., Ohkuma M. 2011; Bacteroides chinchillae sp. nov. and Bacteroides rodentium sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces. Int J Syst Evol Microbiol 61:877–881 [View Article][PubMed]
    [Google Scholar]
  5. Kitahara M., Sakamoto M., Tsuchida S., Kawasumi K., Amao H., Benno Y., Ohkuma M. 2012; Bacteroides stercorirosoris sp. nov. and Bacteroides faecichinchillae sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces. Int J Syst Evol Microbiol 62:1145–1150 [View Article][PubMed]
    [Google Scholar]
  6. Komagata K., Suzuki K. 1988; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  7. Krieg N. R. 2011; Family V. Prevotellaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 p. 85 Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B. New York: Springer;
    [Google Scholar]
  8. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  10. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  11. Morotomi M., Nagai F., Sakon H., Tanaka R. 2009; Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol 59:1895–1900 [View Article][PubMed]
    [Google Scholar]
  12. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol 176:725–732[PubMed]
    [Google Scholar]
  13. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  15. Sakamoto M., Ohkuma M. 2010; Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J Med Microbiol 59:1293–1302 [View Article][PubMed]
    [Google Scholar]
  16. Sakamoto M., Ohkuma M. 2012; Bacteroides sartorii is an earlier heterotypic synonym of Bacteroides chinchillae and has priority. Int J Syst Evol Microbiol 62:1241–1244 [View Article][PubMed]
    [Google Scholar]
  17. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [View Article][PubMed]
    [Google Scholar]
  18. Sakamoto M., Suzuki N., Okamoto M. 2010a; Prevotella aurantiaca sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 60:500–503 [View Article][PubMed]
    [Google Scholar]
  19. Sakamoto M., Suzuki N., Benno Y. 2010b; hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes . Int J Syst Evol Microbiol 60:2984–2990 [View Article][PubMed]
    [Google Scholar]
  20. Shah H. N., Collins D. M. 1990; Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides . Int J Syst Bacteriol 40:205–208 [View Article][PubMed]
    [Google Scholar]
  21. Shimodaira H. 2002; An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508 [View Article][PubMed]
    [Google Scholar]
  22. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116 [View Article]
    [Google Scholar]
  23. Shimodaira H., Hasegawa M. 2001; consel: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247 [View Article][PubMed]
    [Google Scholar]
  24. Silvestro D., Michalak I. 2010; raxmlGUI: a graphical front-end for RAxML. Available at http://sourceforge.net/projects/raxmlgui/
  25. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  26. Ueki A., Akasaka H., Suzuki D., Hattori S., Ueki K. 2006; Xylanibacter oryzae gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, xylanolytic bacterium isolated from rice-plant residue in flooded rice-field soil in Japan. Int J Syst Evol Microbiol 56:2215–2221 [View Article][PubMed]
    [Google Scholar]
  27. Ueki A., Akasaka H., Satoh A., Suzuki D., Ueki K. 2007; Prevotella paludivivens sp. nov., a novel strictly anaerobic, Gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int J Syst Evol Microbiol 57:1803–1809 [View Article][PubMed]
    [Google Scholar]
  28. Willems A., Collins M. D. 1995; 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov.. Int J Syst Bacteriol 45:832–836 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038638-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error